Carbides of transition metals: Properties, application and production. Review. Part 1. Titanium and vanadium carbides
https://doi.org/10.17073/0368-0797-2022-5-305-322
Abstract
The properties, application, and methods for producing titanium and vanadium carbides are considered. These carbides are oxygen-free refractory metal-like compounds. As a result, they are characterized by high values of thermal and electrical conductivity. Their hardness is relatively high. Titanium and vanadium carbides exhibit significant chemical resistance in aggressive environments. For these reasons, they have found application in modern technology. These carbides are used as surfacing materials for the application of wear-resistant coatings to steel products. It is possible to use them as catalysts in organic synthesis. Titanium carbide is used in tungsten-free hard alloys, carbide steels. Due to its high hardness, it is used as an abrasive and as a component of ceramic cutting tools. Vanadium carbide serves as an inhibitor of the growth of tungsten carbide grains in hard alloys. The properties of refractory compounds depend on the content of impurities and dispersion (particle size). To solve a specific problem associated with the use of refractory compounds, it is important to choose the right method for their preparation and to determine the permissible content of impurities in the initial components. This leads to existence of different methods for the synthesis of carbides. The main methods for their preparation are: synthesis from simple substances (metals and carbon), metallothermal and carbothermal reduction. Plasma-chemical synthesis (vapor-gas phase deposition) is also used to obtain carbide nanopowders. A characteristic is given to each of these methods. Information on the possible mechanism of the processes of carbothermal synthesis is presented.
Keywords
About the Authors
Yu. L. KrutskiiRussian Federation
Yurii L. Krutskii, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Chemistry and Chemical Technology”
20 K. Marksa Ave., Novosibirsk 630073, Russian Federation
T. S. Gudyma
Russian Federation
Tat’yana S. Gudyma, Postgraduate of the Chair “Chemistry and Chemical Technology”
20 K. Marksa Ave., Novosibirsk 630073, Russian Federation
I. D. Kuchumova
Russian Federation
Ivanna D. Kuchumova, Postgraduate of the Chair “Materials Science in Mechanical Engineering”, Novosibirsk State Technical University; Junior Researcher of the Laboratory of Heterophase Materials Modeling, Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences
20 K. Marksa Ave., Novosibirsk 630073, Russian Federation
15 Akademika Lavrent'eva Аve., Novosibirsk 630090, Russian Federation
R. R. Khabirov
Russian Federation
Roman R. Khabirov, MA Student of the Chair “Materials Science in Mechanical Engineering”
20 K. Marksa Ave., Novosibirsk 630073, Russian Federation
K. A. Antropova
Russian Federation
Kristina A. Antropova, Student of the Chair “Materials Science in Mechanical Engineering”
20 K. Marksa Ave., Novosibirsk 630073, Russian Federation
References
1. State Diagrams of Binary Metal Systems. Reference book. Vol. 1. Lyakishev N.P. ed. Moscow: Mashinostroenie, 1996, 992 p. (In Russ.).
2. Vinitskii I.M. Dependence of properties of monocarbides of IV-V groups transition metals on carbon content. Poroshkovaya metallurgiya. 1993, no. 6, pp. 76–82. (In Russ.).
3. Properties, Production and Application of Refractory Compounds. Reference book. Kosolapova T.Ya. ed. Moscow: Metallurgiya, 1986, 928 p. (In Russ.).
4. Kosolapova T.Ya. Carbides. Moscow: Metallurgiya, 1968, 300 p. (In Russ.).
5. Doron’kin E.D. Tungsten-free hard alloys. Tsvetnyye metally. 1983, no. 7, pp. 45–46. (In Russ.).
6. Kiparisov S.S., Levinskii Yu.V., Petrov A.P. Titanium Carbide: Production, Properties, Application. Moscow: Metallurgiya, 1987, 216 p. (In Russ.).
7. Kul’kov S.N., Gnyusov S.F. Carbide Steels based on Titanium and Tungsten Carbides. Tomsk: Izdatelstvo NTL, 2006, 240 p. (In Russ.).
8. Svistun L.I. Constructional carbide steels: A review of their fabrication, properties, and application. Russian Journal of Non-Ferrous Metals. 2009, vol. 51, no. 2, pp. 188–196. https://doi.org/10.3103/S1067821210020215
9. Samsonov G.V., Epik A.P. Refractory Coatings. Moscow: Metallurgiya, 1973, 400 p. (In Russ.).
10. Antsiferov V.N., Shmakov A.M., Ivanova M.V., Popov V.V. Cladding of titanium carbide powders with a layer of Ni–Fe–P and properties of plasma coatings from them. II. Properties of plasma coatings from clad titanium carbide powders. Poroshkovaya metallurgiya. 1993, no. 4, pp. 49–52. (In Russ.).
11. Fouvry S., Wendler B., Liskiewicz T., Dudek M., Kolodziejczyk L. Fretting wear analysis of TiC/VC multilayered hard coatings: Experiments and modeling approaches. Wear. 2004, vol. 257, no. 7-8, pp. 641–653. https://doi.org/10.1016/j.wear.2004.02.009
12. Tkachenko Yu.G., Yurchenko D.Z., Britun V.F., Isaeva L.P., Varchenko V.T. Structure and properties of wear-resistant electrospark coatings when using titanium carbide hard alloys as anode. Poroshkovaya metallurgiya. 2013, no. 5/6, pp. 86–96. (In Russ.).
13. Isalgue A., Fernandez J., Cinca N., Villa M., Guilemany J.M. Mechanical and nanoindentation behavior of TiC–TiNi thermal spray coating. Journal of Alloys and Compounds. 2013, vol. 577, pp. 5277–5281. https://doi.org/10.1016/j.jallcom.2012.05.033
14. Gnyusov S.F., Tarasov S.Yu. The microstructural aspects of abrasive wear resistance in composite electron beam clad coatings. Applied Surface Science. 2014, vol. 293, pp. 318–325. https://doi.org/10.1016/j.apsusc.2013.12.161
15. Adamovskii A.A. Transition metal carbides in abrasive processing. Poroshkovaya metallurgiya. 2007, no. 11/12, pp. 96–111. (In Russ.).
16. Merzhanov A.G., Karyuk G.G., Borovinskaya I.P., Sharivker S.Yu., Moshkovskii E.I., Prokudina V.K., Dyad’ko E.G. Titanium carbide obtained by self-propagating high-temperature synthesis as highly efficient abrasive material. Poroshkovaya metallurgiya. 1981, no. 10, pp. 50–55. (In Russ.).
17. Zou B., Huang C., Song J., Liu Z., Liu L., Zhao Y. Mechanical properties and microstructure of TiB2–TiC composite ceramic tool material. International Journal of Refractory Metals and Hard Materials. 2012, vol. 35, pp. 1–9. https://doi.org/10.1016/j.ijrmhm.2012.02.011
18. Zou B., Ji W., Huang C., Wang J., Li S., Xu K. Effects of superfine refractory carbide additives on microstructure and mechanical properties of TiB2 – TiC + Al2O3 composite ceramic cutting tool materials. Journal of Alloys and Compounds. 2014, vol. 585, pp. 192–202. https://doi.org/10.1016/j.jallcom.2013.09.119
19. Kharlamov A.I., Kirillova N.V. Catalytic properties of powders of transition elements refractory compounds. Carbides and nitrides. Poroshkovaya metallurgiya. 1983, no. 2, pp. 55–67. (In Russ.).
20. Rodriguez J.A., Evans J., Feria L., Vidal A.B., Liu P., Nakamura K., Illas F. CO2 hydrogenation on Au/TiC, Cu/TiC and Ni/TiC catalysts: Production of CO, methanol and methane. Journal of Catalysis. 2013, vol. 307, pp. 162–169. https://doi.org/10.1016/j.jcat.2013.07.023
21. Wu X.Y., Li G.Z., Chen Y.H., Li G.Y. Microstructure and mechanical properties of vanadium carbide coatings synthesized by reactive magnetron sputtering. International Journal of Refractory Metals and Hard Materials. 2009, vol. 27, no. 3, pp. 611–614. https://doi.org/10.1016/j.ijrmhm.2008.09.014
22. Quanlin W., Wenge L., Ning Z., Gang W., Haishan W. Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate. Materials & Design. 2013, vol. 49, pp. 10–18. https://doi.org/10.1016/j.matdes.2013.01.067
23. Kurlov A.S., Gusev A.I. Physics and Chemistry of Tungsten Carbides. Moscow: FIZMATLIT, 2013, 272 p. (In Russ.).
24. Soleimanpour A.M., Abachi P., Simchi A. Microstructure and mechanical properties of WC–10Co cemented carbide containing VC or (Ta, Nb)C and fracture toughness evaluation using different models. International Journal of Refractory Metals and Hard Materials. 2012, vol. 31, pp. 141–146. https://doi.org/10.1016/j.ijrmhm.2011.10.004
25. Lin G.G., Kny E., Yuan G., Djuricic B. Microstructure and properties of ultrafine WC–0.6VC–10Co hardmetals densified by pressure-assisted critical liquid phase sintering. Journal of Alloys and Compounds. 2004, vol. 383, no. 1–2, pp. 98–102. https://doi.org/10.1016/j.jallcom.2004.04.070
26. Wang H., Fang Z.Z., Sohn H.Y. Grain growth during the early stage of sintering of nanosized WC–Co powder. International Journal of Refractory Metals and Hard Materials. 2008, vol. 26, no. 3,
27. pp. 232–241. https://doi.org/10.1016/j.ijrmhm.2007.04.006
28. Xiao D.-h., He Y.-h., Luo W.-h, Song M. Effect of VC and NbC additions on microstructure and properties of ultrafine WC–10Co cemented carbides. Transactions of Nonferrous Metals Society of China. 2009, vol. 19, no. 6, pp. 1520–1525. https://doi.org/10.1016/S1003-6326(09)60063-7
29. Bonache V., Salvador M.D., Fernández A., Borrell A. Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies. International Journal of Refractory Metals and Hard Materials. 2011, vol. 29, no. 2, pp. 202–208. https://doi.org/10.1016/j.ijrmhm.2010.10.007
30. Bonache V., Salvador M.D., Rocha V.G., Borrell A. Microstructural control of ultrafine and nanocrystalline WC–12Co–VC/Cr3C2 mixture by spark plasma sintering. Ceramics International. 2011, vol. 37, no. 3, pp. 1139–1142. https://doi.org/10.1016/j.ceramint.2010.11.026
31. Sun L., Tian’en Y., Jia C., Hiong J. VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials. 2011, vol. 29, no. 2, pp. 147–152. https://doi.org/10.1016/j.ijrmhm.2010.09.004
32. Mahmoodan M., Aliakbarzadeh H., Gholamipour R. Sintering of WC–10 %Co nanopowders containing TaC and VC grain growth inhibitors. Transactions of Nonferrous Metals Society of China. 2011, vol. 21, no. 5, pp. 1080–1084. https://doi.org/10.1016/S1003-6326(11)60825-X
33. Zhao Z. Microwave-assisted synthesis of vanadium and chromium carbides nanocomposite and its effect on properties of WC–8Co cemented carbides. Scripta Materialia. 2016, vol. 120, pp. 103–106. https://doi.org/10.1016/J.SCRIPTAMAT.2016.04.024
34. Chen H., Yang Q., Wang J., Yang H., Chen L., Ruan J., Huang Q. Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC–6 wt. % Co cemented carbides. Journal of Alloys and Compounds. 2017, vol. 714, pp. 245–250. https://doi.org/10.1016/j.jallcom.2017.04.187
35. Espinoza-Fernández L., Borrell A., Salvador M.D., Gutierrez-Gonzalez C.F. Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear. 2013, vol. 307, no. 1–2, pp. 60–67. https://doi.org/10.1016/j.wear.2013.08.003
36. Li Y., Zheng D., Li X, Qu S., Yang C. Cr3C2 and VC doped WC–Si3N4 composites prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials. 2013, vol. 41, pp. 540–546. https://doi.org/10.1016/j.ijrmhm.2013.07.004
37. Zhan B., Liu N., Jin Z.-B., Li Q.-L., Shi J.-G. Effect of VC/Cr3C2 on microstructure and mechanical properties of Ti(C, N)-based cermets. Transactions of Nonferrous Metals Society of China. 2012, vol. 22, no. 5, pp. 1096–1105. https://doi.org/10.1016/S1003-6326(11)61289-2
38. Meunier F., Delporte P., Heinrich B., Bouchy C., Crouzet C., Pham-Huu C., Panissod P., Lerou J.J., Mills P.L., Ledoux M.J. Synthesis and characterization of high specific surface area vanadium carbide; application to catalytic oxidation. Journal of Catalysis. 1997, vol. 169, no. 1, pp. 33–44. https://doi.org/10.1006/jcat.1997.1694
39. Choi J.-G. Ammonia decomposition over vanadium carbide catalysts. Journal of Catalysis. 1999, vol. 182, no. 1, pp. 104–116. https://doi.org/10.1006/jcat.1998.2346
40. Rodríguez P., Brito J.L., Albornoz A., Labadí M., Pfaff C., Marrero S., Moronta D., Betancourt P. Comparison of vanadium carbide and nitride catalysts for hydrotreating. Catalysis Communications. 2004, vol. 5, no. 2, pp. 79–82. https://doi.org/10.1016/j.catcom.2003.11.011
41. Gurin V.N. Methods for the synthesis of refractory compounds and prospects for their application to create new materials. Zhurnal VKhO im. D.I. Mendeleeva. 1979, vol. 24, no. 3, pp. 212–222. (In Russ.).
42. Merzhanov A.G., Borovinskaya I.P. Self-propagating high-temperature synthesis in the chemistry and technology of refractory compounds. Zhurnal VKhO im. D.I. Mendeleeva. 1979, vol. 24, no. 3, pp. 223–227. (In Russ.).
43. Properties of the Elements: Part 1. Physical Properties. Reference Book. Samsonov G.V. ed. Moscow: Metallurgiya, 1976, 600 p. (In Russ.).
44. Samsonov G.V., Perminov V.P. Magnesiothermy. Moscow: Metallurgiya, 1971, 176 p. (In Russ.).
45. Kiffer R., Benezovsky F. Hartmetalle. Vienna: Springer-Verlag, 1965. (In Germ.) (Russ ed.: Kiffer R., Benezovsky F. Tverdye materialy. Moscow: Metallurgiya, 1968, 384 p. (In Russ.).
46. Shkiro V.M., Borovinskaya I.P. Investigation of regularities of titanium-carbon mixtures combustion. In: Combustion Processes in Chemical Technology and Metallurgy. Chernogolovka: OIKhF AN USSR, 1975, pp. 253–258. (In Russ.).
47. Prokudina V.K., Ratnikov V.I., Maslov V.M., Borovinskaya I.P., Merzhanov A.G., Dubovitskii F.I. Technology of titanium carbides. In: Combustion Processes in Chemical Technology and Metallurgy. Chernogolovka: OIKhF AN USSR, 1975, pp. 136–141. (In Russ.).
48. Shkiro V.M., Borovinskaya I.P., Merzhanov A.G. Study of the reaction properties of various types of carbon in synthesis of titanium carbide by SHS. Poroshkovaya metallurgiya. 1979, no. 10, pp. 6–9. (In Russ.).
49. Shkiro V.M., Prokudina V.K., Borovinskaya I.P. Effect of oxidation of titanium powders on synthesis of titanium carbide by SHS. Poroshkovaya metallurgiya. 1981, no. 12, pp. 49–54. (In Russ.).
50. Nersisyan H.H., Lee J.H., Won C.W. Self-propagating high-temperature synthesis of nano-sized titanium carbide powder. Journal of Materials Research. 2002, vol. 17, no. 11, pp. 2859–2864. https://doi.org/10.1557/JMR.2002.0415
51. Yang Y.F., Mu D.K. Rapid dehydrogenation of TiH2 and its effect on formation mechanism of TiC during self-propagation high-temperature synthesis from TiH2–C system. Powder Technology. 2013, vol. 249, pp. 208–211. https://doi.org/10.1016/j.powtec.2013.08.020
52. Popovich A.A., Reva V.P., Vasilenko V.N., Popovich T.A., Belous O.A. Mechanochemical method for obtaining powders of refractory compounds (Review). Poroshkovaya metallurgiya. 1993, no. 2, pp. 37–43. (In Russ.).
53. Liu Z.G., Tsuchiya K., Umemoto M. Mechanical milling of fullerene with carbide forming elements. Journal of Materials Science. 2002, vol. 37, pp. 1229–1235. https://doi.org/10.1023/A:1014383909485
54. Rahaei M.B., Yazdani rad R., Kazemzadeh A., Ebadzadeh T. Mechanochemical synthesis of nano TiC powder by mechanical milling of titanium and graphite powders. Powder Technology. 2012, vol. 217, pp. 369–376. https://doi.org/10.1016/j.powtec.2011.10.050
55. Onishchenko D.V., Reva V.P. Specificity of mechanochemical synthesis of titanium carbide using various carbon agents. Poroshkovaya metallurgiya. 2013, no. 3/4, pp. 63–74. (In Russ.).
56. Abderrazak H., Schoenstein S., Abdellaoui M., Jouini N. Spark plasma sintering consolidation of nanostructured TiC prepared by mechanical alloying. International Journal of Refractory Metals and Hard Materials. 2011, vol. 29, no. 2, pp. 170–176. https://doi.org/10.1016/j.ijrmhm.2010.10.003
57. Lyakhov N., Grigoreva T., Čepelák V., Tolochko B., Ancharov A., Vosmerikov S., Devyatkina E., Udalova T., Petrova S. Rapid mechanochemical synthesis of titanium and hafnium carbides. Journal of Materials Science. 2018, vol. 53, pp. 13584–13591. https://doi.org/10.1007/s10853-018-2450-x
58. Borovinskaya I.P., Ignat’eva T.I., Vershinnikov V.I., Miloserdova O.M., Semenova V.N. Self-propagating high-temperature synthesis of ultra- and nanodispersed WC and TiC powders. Poroshkovaya metallurgiya. 2008, no. 9/10, pp. 3–12. (In Russ.).
59. Ma J., Wu M., Du Y., Chen S., Li G., Hu J. Synthesis of nanocrystalline titanium carbide with a new convenient route at low temperature and its thermal stability. Materials Science and Engineering B. 2008, vol. 153, no. 1–3, pp. 96–99. https://doi.org/10.1016/j.mseb.2008.10.025
60. Won H.I., Nersisyan H., Won C.W., Lee H.H. Simple synthesis of nano-sized refractory metal carbides by combustion process. Journal of Materials Science. 2011, vol. 46, pp. 6000–6006. https://doi.org/10.1007/s10853-011-5562-0
61. Ebrahimi-Kahrizsangi R., Alimardani M., Torabi O. Investigation on mechanochemical behavior of the TiO2–Mg–C system reactive mixtures in the synthesis of titanium carbide. International Journal of Refractory Metals and Hard Materials. 2015, vol. 52, pp. 90–97. https://doi.org/10.1016/j.ijrmhm.2015.05.008
62. Zhou L., Yang L., Shao L., Chen B., Meng F., Qian Y., Hu L. General fabrication of boride, carbide and nitride nanocrystals via a metal-hydrolysis-assisted process. Inorganic Chemistry. 2017, vol. 56, no. 5, pp. 2440–2447. https://doi.org/10.1021/acs.inorgchem.6b02501
63. Wang L., Li Q., Zhu Y., Qian Y. Magnesium-assisted formation of metal carbides and nitrides from metal oxides. International Journal of Refractory Metals and Hard Materials. 2012, vol. 31, pp. 288–292. https://doi.org/10.1016/j.ijrmhm.2011.10.009
64. Aleksandrovskii S.V., Sizyakov V.M., Geilikman M.B., Gaidamako I.M. Some characteristics of the production of carbidized titanium by thermal reduction of titanium and carbon chlorides with magnesium. Russian Journal of Applied Chemistry. 1998, vol. 71, no. 11, pp. 1881–1884.
65. Dyjak S., Norek M., Polanski M., Cudzilo S., Bystrzycki J. A simple method of synthesis and surface purification of titanium carbide powder. International Journal of Refractory Metals and Hard Materials. 2013, vol. 38, pp. 87–91. https://doi.org/10.1016/j.ijrmhm.2013.01.004
66. Kudaka K., Iizumi K., Iizumi H., Sasaki T. Synthesis of titanium carbide and titanium diboride by mechanochemical displacement. Journal of Materials Science Letters. 2001, vol. 20, pp. 1619–1622. https://doi.org/10.1023/A:1017906012176
67. Alymov M.I., Shustov V.S., Kasimtsev A.V., Zhigunov V.V., Ankudinov A.B., Zelenskii V.A. Specific features of the densification of hydroxyapatite nanopowders upon pressing. Nanotechnologies in Russia. 2011, vol. 6, no. 5, pp. 353–356. https://doi.org/10.1134/S1995078011030025
68. Wang L., Li Q., Mei T., Shi L., Zhu Y., Qian Y. A thermal reduction route to nanocrystalline transition metal carbides from waste polytetrafluoroethylene and metal oxides. Materials Chemistry and Physics. 2012, vol. 137, no. 1, pp. 1–4. https://doi.org/10.1016/j.matchemphys.2012.08.008
69. Rosin I.V., Tomina L.D. General and Inorganic Chemistry. Modern Course. Moscow: Yurait, 2012, 1338 p. (In Russ.).
70. Elyutin V.P., Pavlov Yu.A., Polyakov V.P., Sheboldaev S.B. Interaction of Metal Oxides with Carbon. Moscow: Metallurgiya, 1976, 360 p. (In Russ.).
71. Vodop’yanov A.G., Kozhevnikov G.N., Baranov S.V. Interaction of refractory metal oxides with carbon. Russian Chemical Reviews. 1988, vol. 57, no. 9, pp. 810–823. https://doi.org/10.1070/RC1988v057n09ABEH003392
72. Physicochemical Properties of Oxides. Reference book. Samsonov G.V. ed. Moscow: Metallurgiya, 1978, 472 p. (In Russ.).
73. Lyubimov V.D., Timoshchuk T.A., Kalacheva M.V. On mechanism of titanium carbide formation during carbothermal reduction of titanium dioxide. Metally. 1992, no. 3, pp. 16–21. (In Russ.).
74. Stolle S., Gruner W., Pitschke W., Berger L.-M., Wetzig K. Comparative microscale investigations of the carbothermal synthesis of (Ti, Zr, Si) carbides with oxide intermediates of different volatilities. International Journal of Refractory Metals and Hard Materials. 2000, vol. 18, no. 1, pp. 61–72. https://doi.org/10.1016/S0263-4368(00)00018-4
75. Gruner W., Stolle S., Wetzig K. Formation of COх species during the carbothermal reduction of oxides of Zr, Si, Ti, Cr, W, and Mo. International Journal of Refractory Metals and Hard Materials. 2000, vol. 18, no. 2–3, pp. 137–145. https://doi.org/10.1016/S0263-4368(00)00013-5
76. Moiseev G.K., Popov S.K., Ovchinnikov L.A., Vatolin N.A. Formation of titanium and zirconium carbides during the interaction of their oxides with carbon in low-temperature plasma. Izvestiya AN SSSR. Neorganicheskie materialy. 1982, vol. 18, no. 9, pp. 1521–1524. (In Russ.).
77. Eick B.M., Youngblood J.P. Carbothermal reduction of metal-oxide powders by synthetic pitch to carbide and nitride ceramics. Journal of Materials Science. 2009, vol. 44, pp. 1159–1171. https://doi.org/10.1007/s10853-009-3249-6
78. Kasimuthumaniyan S., Singh S.K., Jayasankar K., Mohanta K., Mandal A. An alternate approach to synthesize TiC powder through thermal plasma processing of titania rich slag. Ceramics International. 2016, vol. 42, no. 16, pp. 18004–18011. https://doi.org/10.1016/j.ceramint.2016.07.169
79. Chen B., Yang L., Heng H., Chen J., Zhang L., Xu L., Qian Y., Yang J. Additive-assisted synthesis of boride, carbide and nitride micro/nanocrystals. Journal of Solid State Chemistry. 2012, vol. 194, pp. 219–224. https://doi.org/10.1016/j.jssc.2012.05.032
80. Krutskii Yu.L., Bannov A.G., Antonova E.V., Shinkarev V.V., Maksimovskii E.A., Ukhina A.V., Solov’ev E.A., Krutskaya T.M., Razumakov A.A., Golovin D.D., Netskina O.V. Synthesis of highly dispersed titanium carbide powder using nanofiber carbon. Perspektivnyye materialy. 2014, no. 2, pp. 1–6. (In Russ.).
81. Krutskii Yu.L., Lozhkina E.A., Maksimovskii E.A., Balaganskii I.A., Popov M.V., Netskina O.V., Tyurin A.G., Kvashina T.S. The use of nanofibrous carbon to obtain highly dispersed titanium carbide. Scientific Bulletin of NSTU. 2017, vol. 69, no. 4, pp. 179–191. (In Russ.).
82. Kuvshinov G.G., Mogilnykh Yu.L., Kuvshinov D.G., Yermakov D.Yu., Yermakova M.A., Salanov A.N., Rudina N.A. Mechanism of porous filamentous carbon granule formation on catalytic hydrocarbon decomposition. Carbon. 1999, vol. 37, no. 8, pp. 1239–1246. https://doi.org/10.1016/S0008-6223(98)00320-0
83. Blott S.J., Pye K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms. 2001, vol. 26, no. 11, pp. 1237–1248. https://doi.org/10.1002/esp.261
84. Kazenas E.K., Tsvetkov Yu.V. Thermodynamics of Oxides Evaporation. Moscow: LKI, 2008, 480 p. (In Russ.).
85. Preiss H., Berger L.-M., Schultze D. Studies on the carbothermal preparation of titanium carbide from different gel precursors. Journal of the European Ceramic Society. 1999, vol. 19, no. 2, pp. 195–206. https://doi.org/10.1016/S0955-2219(98)00190-3
86. Leconte Y., Maskrot H., Combemale L., Herlin-Boime N., Reynaud C. Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nanopowders. Journal of Analytical and Applied Pyrolysis. 2007, vol. 79, no. 1-2, pp. 465–470. https://doi.org/10.1016/j.jaap.2006.11.009
87. Lin H., Tao B., Xiong J., Li Q. Using a cobalt activator to synthesize titanium carbide nanopowders. International Journal of Refractory Metals and Hard Materials. 2013, vol. 41, pp. 363–365. https://doi.org/10.1016/j.ijrmhm.2013.05.010
88. Chen X., Fan J., Lu Q. Synthesis and characterization of TiC nanopowders via sol-gel and subsequent carbothermal reduction process. Journal of Solid State Chemistry. 2018, vol. 262, pp. 44–52. https://doi.org/10.1016/j.jssc.2018.03.006
89. Ostrovski O., Guangqing Z. Reduction and carburization of metal oxides by methane-containing gas. American Institute of Chemical Engineers Journal. 2006, vol. 52, no. 1, pp. 300–310. https://doi.org/10.1002/aic.10628
90. Panfilov S.A., Rezvykh V.F., Tsvetkov Yu.V., Kal’kov A.A., Khaidarov V.V. Influence of geometric and consumption parameters on TiC plasma-chemical synthesis during titanium tetrachloride processing. Fizika i khimiya obrabotki materialov. 1979, no. 5, pp. 21–27. (In Russ.).
91. Rezvykh V.F., Panfilov S.A., Khaidarov V.V., Tsvetkov Yu.V. Influence of raw material input conditions on titanium carbide synthesis process. Fizika i khimiya obrabotki materialov. 1983, no. 2, pp. 58–61. (In Russ.).
92. Ibragimov A.T., Kalamazov R.I., Tsvetkov Yu.V. Physicochemical properties of highly dispersed titanium carbide. Fizika i khimiya obrabotki materialov. 1985, no. 5, pp. 84–89. (In Russ.).
93. Saburov V.P., Cherepanov A.N., Zhukov M.F., Galevskii G.V., Krushenko G.G., Borisov V.T. Plasma-Chemical Synthesis of Ultrafine Powders and Their Application for Modification of Metals and Alloys. Novosibirsk: Nauka, Sibirskaya izdatel’skaya firma RAS, 1995, 344 p. (In Russ.)
94. Amaral P.M., Fernandes J.C., Rosa L.G., Martínez D., Rodríguez J., Shohoji N. Carbide formation of Va-group metals (V, Nb and Ta) in a solar furnace. International Journal of Refractory Metals and Hard Materials. 2000, vol. 18, no. 1, pp. 47–53. https://doi.org/10.1016/S0263-4368(00)00014-7
95. Zhang B., Li Z.Q. Synthesis of vanadium carbide by mechanical alloying. Journal of Alloys and Compounds. 2005, vol. 392, no. 1–2, pp. 183–186. https://doi.org/10.1016/j.jallcom.2004.09.018
96. Hassanzadeh-Tabrizi S.A., Davoodi D, Beykzadeh A.A., Chami A. Fast synthesis of VC and V2C nanopowders by the mechanochemical combustion method. International Journal of Refractory Metals and Hard Materials. 2015, vol. 51, pp. 1–5. https://doi.org/10.1016/j.ijrmhm.2015.02.008
97. Hossein-Zadeh M., Razavi M., Safa M., Abdollahi A., Mirzaee O. Synthesis and structural evolution of vanadium carbide in nanoscale during mechanical alloying. Journal of King Saud University – Engineering Sciences. 2016, vol. 28, no. 2, pp. 207–212. https://doi.org/10.1016/j.jksues.2014.03.010
98. Ma J., Wu M., Du Y., Chen S., Ye J., Jin L. Low temperature synthesis of vanadium carbide (VC). Materials Letters. 2009, vol. 63, no. 11, pp. 905–907. https://doi.org/10.1016/j.matlet.2009.01.033
99. Chen Y., Zhang H., Ye H., Ma J. A simple and novel route to synthesize nano-vanadium carbide using magnesium powders, vanadium pentoxide and different carbon source. International Journal of Refractory Metals and Hard Materials. 2011, vol. 29, no. 4, pp. 528–531. https://doi.org/10.1016/j.ijrmhm.2011.03.004
100. Mahajan M., Singh K., Pandey O.P. Single step synthesis of nano vanadium carbide – V8C7 phase. International Journal of Refractory Metals and Hard Materials. 2013, vol. 36, pp. 106–110. https://doi.org/10.1016/j.ijrmhm.2012.07.009
101. Li C., Yang X.G., Yang B.J., Qian Y.T. A chemical co-reduction route to synthesize nanocrystalline vanadium carbides. Journal of the American Ceramic Society. 2006, vol. 89, no. 1, pp. 320–322. https://doi.org/10.1111/j.1551-2916.2005.00655.x
102. Hossein-Zadeh M., Mirzaee O. Synthesis and characterization of V8C7 nanocrystalline powder by heating milled mixture of V2O5 , C and Ca via mechanochemical activation. Advanced Powder Technology. 2014, vol. 25, no. 3, pp. 978–982. https://doi.org/10.1016/j.apt.2014.01.017
103. Shumilova R.G., Kosolapova T.Ya. Semi-industrial production of vanadium carbide. Poroshkovaya metallurgiya. 1968, no. 11, pp. 83–88. (In Russ.)
104. Zhao Z., Liu Y., Cao H., Gao S., Tu M. Phase evolution during synthesis of vanadium carbide (V8C7) nanopowders by thermal processing of the precursor. Vacuum. 2008, vol. 82, no. 8, pp. 852–855. https://doi.org/10.1016/j.vacuum.2007.12.006
105. Dai L.Y., Lin S.F., Chen J.F., Zeng M.Q., Zhu M. A new method of synthesizing ultrafine vanadium carbide by dielectric barrier discharge plasma assisted milling. International Journal of Refractory Metals and Hard Materials. 2012, vol. 30, no. 1, pp. 48–50. https://doi.org/10.1016/j.ijrmhm.2011.07.002
106. Krutskii Yu.L., Tyurin A.G., Popov M.V., Maksimovskii E.A., Netskina O.V. Synthesis of finely dispersed vanadium carbide (VC0,88) using nanofibrous carbon. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 4, pp. 260–267. https://doi.org/10.17073/0368-0797-2018-4-260-267
107. Preiss H., Schultze D., Szulzewsky K. Carbothermal synthesis of vanadium and chromium carbides from solution-derived precursors. Journal of the European Ceramic Society. 1999, vol. 19, no. 2, pp. 187–194. https://doi.org/10.1016/S0955-2219(98)00191-5
108. Lei M., Zhao H.Z., Yang H., Song B., Tang W.H. Synthesis of transition metal carbide nanoparticles through melamine and metal oxides. Journal of the European Ceramic Society. 2008, vol. 28, no. 8, pp. 1671–1677. https://doi.org/10.1016/j.jeurceramsoc.2007.11.013
109. Li P.G., Lei M., Tang W.H. Route to transition metal carbide nanoparticles through cyanamide and metal oxides. Materials Research Bulletin. 2008, vol. 43, no. 12, pp. 3621–3626. https://doi.org/10.1016/j.materresbull.2008.01.016
110. Lei M., Zhao H.Z., Yang H., Song B., Cao L.Z., Li P.G., Tang W.H. Syntheses of metal nitrides, metal carbides and rare-earth metal dioxymonocarbodiimides from metal oxides and dicyandiamide. Journal of Alloys and Compounds. 2008, vol. 460, no. 1–2, pp. 130–137. https://doi.org/10.1016/j.jallcom.2007.05.076
111. Lin H., Tao B.W., Li Q., Li Y.R. In situ synthesis of V8C7 nanopowders from a new precursor. International Journal of Refractory Metals and Hard Materials. 2012, vol. 31, pp. 138–140. https://doi.org/10.1016/j.ijrmhm.2011.10.003
112. Liu F., Yao Y., Zhang H., Kang Y., Yin G., Huang Z., Liao X., Liang X. Synthesis and characterization of vanadium carbide nanoparticles by thermal refluxing-derived precursors. Journal of Materials Science. 2011, vol. 46, pp. 3693–3697. https://doi.org/10.1007/s10853-010-5123-y
113. Isaeva N.V., Blagoveshchenskii Yu.V., Blagoveshchenskaya N.V., Mel’nik Yu.I., Samokhin A.V., Alekseev N.V., Astashov A.G. Production of carbide and hard-alloy mixture nanopowders with low-temperature plasma. Powder Metallurgy and Functional Coatings. 2013, no. 3, pp. 7–14. (In Russ.). https://doi.org/10.17073/1997-308X-2013-3-7-14
Review
For citations:
Krutskii Yu.L., Gudyma T.S., Kuchumova I.D., Khabirov R.R., Antropova K.A. Carbides of transition metals: Properties, application and production. Review. Part 1. Titanium and vanadium carbides. Izvestiya. Ferrous Metallurgy. 2022;65(5):305-322. (In Russ.) https://doi.org/10.17073/0368-0797-2022-5-305-322