Fatigue fracture of steel with ferrite-martensite composite structure
https://doi.org/10.17073/0368-0797-2022-2-92-97
Abstract
The article presents results of the fatigue tests of natural steel composite material for cyclic bending in a zero loading cycle. Natural ferritemartensite composite (NFMC) has a structure of alternating layers of viscous ferrite and strong martensite, which determines special mechanism of crack deceleration under loading. Zero loading cycle presumes presence of tensile forces directed only in one side, which makes it possible to avoid work hardening of crack edges during its growth. A diagram of fatigue fracture was constructed using data obtained on kinetics of fatigue crack propagation and its growth rate, depending on the number of vibration cycles. Comparison of test results for the samples made of steel of the same chemical composition was carried out. In one case, the secondary sorbite structure ran through the traditional heat treatment. In the other, quenching of the initial row ferrite-pearlite structure in intercritical temperature range, led to obtaining ferrite-martensite composite layered structure. These materials had the same hardness, but the difference in structure organization caused the NFMC structure steel advantage in terms of resistance to fracture under cyclic loading. When crack approaches the martensite-ferrite interface, delamination occurs in ferrite due to tensile stresses parallel to the crack plane. Growth of a crack stops before additional energy is supplied for a new crack generation under conditions close to the uniaxial stress state. Method for determining characteristics of kinetics of crack growth under fatigue loading is presented and recommended for testing steels and alloys under conditions of cyclic load changes.
About the Authors
V. N. PustovoitRussian Federation
Viktor N. Pustovoit, Dr. Sci. (Eng.), Prof. of the Chair “Physical and Applied Material Science”
1 Gagarina Sqr., Rostov-on-Don 344002
S. A. Grishin
Russian Federation
Sergei A. Grishin, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Physical and Applied Material Science”
1 Gagarina Sqr., Rostov-on-Don 344002
Yu. V. Dolgachev
Russian Federation
Yurii V. Dolgachev, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Physical and Applied Material Science”
1 Gagarina Sqr., Rostov-on-Don 344002
V. V. Duka
Russian Federation
Valentina V. Duka, Senior Lecturer of the Chair “Physical and Applied Material Science”
1 Gagarina Sqr., Rostov-on-Don 344002
References
1. Pustovoit V.N., Dombrovskii Yu.M., Zheleva A.V., Zaitseva M.V. Method of natural ferrite-martensite composite obtaining. Patent RF 2495141. MPK S21D8/800, S21D8/02. Bulleten᾿ izobretenii. 2013, no. 28. (In Russ.).
2. Pustovoit V.N., Dolgachev Yu.V., Dombrovskii Yu.M., Duka V.V. Structural organization and properties of a natural ferritemartensite steel composite. Metal Science and Heat Treatment. 2020, vol. 62, no. 56, pp. 369–375. https://doi.org/10.1007/s11041-020-00570-9
3. Cadoni E., Singh N.K., Forni D., Singha M.K., Gupta N.K. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension. European Physical Journal: Special Topics. 2016, vol. 225, no. 2, pp. 409–421. https://doi.org/10.1140/epjst/e2016-02638-3
4. Luo M., Wierzbicki T. Numerical failure analysis of a stretchbending test on dualphase steel sheets using a phenomenological fracture model. International Journal of Solids and Structures. 2010, vol. 47, no. 2223, pp. 3084–3102.https://doi.org/10.1016/j.ijsolstr.2010.07.010
5. Kim J.H., Sung J.H., Piao K., Wagoner R.H. The shear fracture of dualphase steel. International Journal of Plasticity. 2011, vol. 27, no. 10, pp. 1658–1676. https://doi.org/10.1016/j.ijplas.2011.02.009
6. Dykeman J., Hoydick D., Link T., Mitsuji H. Material property and formability characterization of various types of high strength dual phase steel. SAE Technical Paper. 2009, vol. 1, pp. 794–804. https://doi.org/10.4271/2009-01-0794
7. Soboyejo W. Mechanical Properties of Engineered Materials. N.Y.: CRC Press, 2002, 608 p.
8. Pustovoit V.N., Grishin S.A., Duka V.V., Fedosov V.V. Setup for studying the kinetics of crack growth in cyclic bending tests. Zavodskaya laboratoriya. Diagnostika materialov. 2020, vol. 86, no. 7, pp. 59–64. (In Russ.). https://doi.org/10.26896/1028-6861-2020-86-7-59-64
9. Pustovoit V.N., Grishin S.A. Special features of fracture of carbon steel with a structure of laminar ferritecarbide mixture. Metal Science and Heat Treatment. 1987, vol. 29, no. 34, pp. 262–266.
10. Nicholas T. High Cycle Fatigue: a Mechanics of Materials Perspective. Elsevier, 2006, 656 p.
11. Miklyaev P.G., Neshpor G.S., Kudryashov V.G. Kinetics of Destruction. Moscow: Metallurgiya, 1979, 279 p. (In Russ.).
12. Cooper G.A., Kelly A. Tensile properties of fibrereinforced metals: fracture mechanics. Journal of the Mechanics and Physics of Solids. 1967, vol. 15, no. 4, pp. 279–297. https://doi.org/10.1016/0022-5096(67)90017-8
13. Greif R., Sanders J.L. The effect of a stringer on the stress in a cracked sheet. Journal of Applied Mechanics. 1965, vol. 32, no. 1, pp. 59–66. https://doi.org/10.1115/1.3625784
14. Bloom J.M., Sanders J.L. The effect of a riveted stringer on the stress in a cracked sheet. Journal of Applied Mechanics. 1966, vol. 33, no. 3, pp. 561–570. https://doi.org/10.1115/1.3625122
15. Sanders J.L. Effect of a stringer on the stress concentration due to a crack in a thin sheet. National Advisory Committee for Aeronautics. 1959, no. 4207, p. 10.
16. Poe J.C.C. Stress Intensity Factor for a Cracked Sheet with Riveted and Uniformly Spaced Stringers. Washington: NASA Technical Report, TR R – 358, 1971, 62 p.
17. Pustovoit V.N., Duka V.V., Dolgachev Yu.V. Scenario of crack growth in steel with a ferritemartensite composite structure. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, no. 10 (205), pp. 118–121.
18. Pustovoit V.N., Duka V.V., Dolgachev Y.V., Aref’eva L.P., Fedosov V.V., Salynskih V.M. Features of destruction of a ferritemartensitic composite. MATEC Web of Conferences. 2018, vol. 226, article 03006. https://doi.org/10.1051/matecconf/201822603006
19. Irwin G.R., Paris P.C. Fundamental aspects of crack growth and fracture. In: Engineering Fundamentals and Environmental Effects. N.Y.: Academic Press, 1971, pp. 1–46.
20. Pugno N., Ciavarella M., Cornetti P., Carpinteri A. A generalized Paris’ law for fatigue crack growth. Journal of the Mechanics and Physics of Solids. 2006, vol. 54, no. 7, pp. 1333–1349. https://doi.org/10.1016/j.jmps.2006.01.007
21. Jones R., Molent L., Pitt S. Similitude and the Paris crack growth law. International Journal of Fatigue. 2008, vol. 30, no. 1011, pp. 1873–1880. https://doi.org/10.1016/j.ijfatigue.2008.01.016
22. Turner C.E., Paris P.C., Erns H. On the relationship between work and crack tip stress intensity in elasticity and plasticity. International Journal of Fracture. 1981, vol. 17, no. 6, pp. R151–R154. https://doi.org/10.1007/BF00681560
23. Paris P., Erdogan F. A critical analysis of crack propagation laws. Journal of Fluids Engineering. 1963, vol. 85, no. 4, pp. 528–533. http://dx.doi.org/10.1115/1.3656900
24. Panasyuk V.V., Ostash O.P., Kostyk E.M., Kudryashov V.G., Neshpor G.S. Cyclic crack resistance of aluminum alloys in the crack origin and growth stages. Soviet Materials Science. 1987, vol. 23, no. 5, pp. 473–479. https://doi.org/10.1007/BF01148672
25. Den Hartog J.P. Advanced Strength of Materials. N.Y.: Courier Corporation, 1987, 378 p.
26. Ross C.T.F., Chilver A. Strength of Materials and Structures. Oxford: Elsevier, 1999, 720 p.
27. Mott R.L., Untener J.A. Applied Strength of Materials. Boca Raton: CRC Press, 2008, 1172 p.
28. Da Silva V.D. Mechanics and Strength of Materials. N.Y.: Springer Science & Business Media, 2005, 529 p.
29. Stephens R.C. Strength of Materials: Theory and Examples. London: Elsevier, 2013, 320 p.
30. Belyayev N.M. Problems in Strength of Materials. Oxford: Elsevier, 2016, 546 p.
Review
For citations:
Pustovoit V.N., Grishin S.A., Dolgachev Yu.V., Duka V.V. Fatigue fracture of steel with ferrite-martensite composite structure. Izvestiya. Ferrous Metallurgy. 2022;65(2):92-97. (In Russ.) https://doi.org/10.17073/0368-0797-2022-2-92-97