Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Development of equipment and technology for precision air-plasma cutting of plate steel

https://doi.org/10.17073/0368-0797-2022-1-38-47

Abstract

The authors have investigated the structure of cutting seams obtained after cutting steel 09G2S with a new narrow-jet plasma torch of PMVR-5.3 type which has a number of design features in gas dynamic stabilization system (GDS) of plasma arc. To increase the efficiency of GDS in PMVR-5.3 plasma torch, a symmetrical input of plasma-forming gas (PFG) into the flow division system and a gas-dynamic flow stabilizer using two (forming and stabilizing) swirlers with a variable number of swirl channels were used. It is shown that the achieved advantage in GDS efficiency makes it possible to obtain high cutting quality of steel 09G2S with thickness of 40 mm with high productivity and lower energy costs. Analytical methods have proved a high degree of cutting precision of the new torch– a small cut width, no melting and rounding of the upper edge, as well as a grate in the cut lower part and splashes in the cut upper part, almost zero angular deviation, minimum values of the surface microrelief and width of the thermal impact zone. Metallographic analysis and determination of hardness showed the presence of three subzones in the thermal impact zone with significant structural changes in two of them. A number of factors were noted influencing the revealed changes in the structure formation, as well as changes in the elemental composition of the cutting seam surface layer revealed during the X-ray spectral analysis. Attention is drawn to the surface microrelief after plasma cutting, which in all quality indicators is commensurate with machining of the surface after milling and corresponds to the second class of quality in terms of surface cleanliness. It was proved that the use of the new narrow-jet plasma torch allows high-quality cutting of plate steel in thickness range up to 40 mm or more. However, welding of blanks without pre-machining can be carried out with a cutting thickness of no more than 20 mm.

About the Authors

S. V. Anakhov
Russian State Professional Pedagogical University
Russian Federation

Sergei V. Anakhov, Cand. Sci. (Phys.–Math.), Assist. Prof., Head of the Chair of Mathematic and Natural Sciences

11 Mashinostroitelei Str., Yekaterinburg 620012



B. N. Guzanov
Russian State Professional Pedagogical University
Russian Federation

Boris N. Guzanov, Dr. Sci. (Eng.), Prof., Head of the Chair of Engineering and Vocational Training in Machinery and Metallurgy

11 Mashinostroitelei Str., Yekaterinburg 620012



A. V. Matushkin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Anatolii V. Matushkin, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Welding Technology”

19 Mira Str., Yekaterinburg 620002



References

1. Krink V., Simler H., Laurisch F. Plasmaschneidtechnologie – Erweiteung wirtschaftlicher Anwendungsgebiete. ICCT 2006: Internationale Schneidtechnische Tagung; Vorträge der gleichnamigen Konferenz; Hannover, 10 und 11. Oktober 2006, pp. 18-25. (In Germ.).

2. Mussmann J. Stand der Bearbeitung von ISO 4063:2009 “Schweissen und verwandte Prozesse – Liste der Prozesse und Ordnungsnummern”. Schweissen und Schneiden. 2010, no. 7–8, pp. 430–433. (In Germ.).

3. Krink V. Plasmaschneiden – ein vielseitiges Verfahren zum Schneiden dunner und dicker Bleche. DVS Congress 2010. Vorträge der Veranstaltung vom 26-28. September 2010 in Nürnberg, pp. 73–78. (In Germ.).

4. Esibyan E.M. Air-plasma cutting: State and prospects. Avtomaticheskaya svarka. 2000, no. 12, pp. 6–20. (In Russ.).

5. Antipov N.A., Medko V.S. Determination of a defective nearsurface layer during air-plasma cutting of blanks made of carbon low-alloy steel. Elektrofizicheskie i elektrokhimicheskie metody obrabotki. 2014, no. 2(80), pp. 25–27. (In Russ.).

6. Vasil’ev A.N., Vnuk V.V., Zinov’ev V.I., Kot’kina T.V. Comparative study of air-plasma and plasma-arc cutting. Izvestiya MGTU. 2014, no. 2(20), pp. 13–18. (In Russ.).

7. Gesteigerte Produktivität durch neueste Plasmaschneidtechnologie. Schweissen und Schneiden. 2008, no. 9, pp. 458–459. (In Germ.).

8. Nachbargauer K. Mit Schneidhohmodus beim Plasmaschneiden reproduzierbare Schneidergebnisse erzeilen. DVS Congress 2010. Vorträge der Veranstaltung vom 26-28. September 2010 in Nürnberg, pp. 95–96. (In Germ.).

9. Wegmann H., Gesthuysen F.-J., Holthaus M. Plasma cutting – an economically viable process for mild and low-alloy steels. Welding and Cutting. 2005, vol. 4, no. 4, pp. 191–194.

10. Anakhov S.V. Principles and Methods of Plasma Torches Design. Yekaterinburg: Izd-vo RSVPU, 2018, 163 p. (In Russ.).

11. Conrads H., Schmidt M. Plasma generation and plasma sources. Plasma Sources Science and Technology. 2000, vol. 9, no. 4, pp. 441-454. https://doi.org/10.1088/0963-0252/9/4/301

12. Venkatramani N. Industrial plasma torches and applications. Current Science. 2002, vol. 83, no. 3, pp. 254–262.

13. Loktionov A.A. Assessment a cut of quality of sheet materials in the conditions of high-precision plasma cutting. Obrabotka metallov. 2013, no. 4(61), pp. 85-89. (In Russ.).

14. Rakhimyanov H.M., Loktionov A.A., Nikitin Yu.V. Evaluation of geometric precision cut of sheet materials with different highprecision plasma cutting technologies. Obrabotka metallov. 2013, no. 3(60), pp. 25–30. (In Russ.).

15. Kirkpatrick I. High definition plasma – an alternative to laser technology. Aircraft Engineering and Aerospace Technology. 1998, vol. 70, no. 3, pp. 215–217. https://doi.org/10.1108/00022669810370349

16. Dresvin S.V., Zverev S.G. Plasma Torches: Designs, Parameters, Technologies. St. Petersburg: izd-vo Politekhnicheskogo un-ta, 2010, 56 p. (In Russ.).

17. Anakhov S.V., Pykin Yu.A., Matushkin A.V. Improving the effectiveness of individual gaseous-vortex stabilization in plasma torches for precision cutting of metals. Svarochnoe proizvodstvo. 2019, no. 4, pp. 27–30. (In Russ.).

18. GOST 14792-80. Parts and blanks cut by oxygen and plasma arc cutting. Accuracy, quality of the cutting surface. Moscow: Izd-vo standartov, 1980, 6 p. (In Russ.).

19. Sukhorukov N.V., Smolentsev E.V. Technology of plasma processing in materials separation. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2009, vol. 5, no. 12, pp. 1–3. (In Russ.).

20. Sumets A.V., Kassov V.D. Regularities of structure formation of heat affected zone at metals cutting. Vestnik KhNADU. 2017, no. 77, pp. 166–170. (In Russ.).

21. Lyashchenko G.I. Quality in plasma-arc cutting. Svarshchik. 2012, no. 4, pp. 34–39. (In Russ.).


Review

For citations:


Anakhov S.V., Guzanov B.N., Matushkin A.V. Development of equipment and technology for precision air-plasma cutting of plate steel. Izvestiya. Ferrous Metallurgy. 2022;65(1):38-47. (In Russ.) https://doi.org/10.17073/0368-0797-2022-1-38-47

Views: 455


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)