Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Modernization of screw rolling technology in a multi-roll mill

https://doi.org/10.17073/0368-0797-2022-1-28-34

Abstract

Analysis of the screw rolling process showed that change in axial speed of the roll along the length of the roll groove of cross rolling mill does not correspond to the required character of change in the speed of deformed billet. The process proceeds under intense axial compression, as a result of which a significant part of the metal crimped in the contact zone is displaced into the inter-roll area. It is shown that direction of the axial force in the corresponding zone of the roll groove depends on the value of inclination angle of the considered roll section generatrix to the rolling axis. The proposed modernization of screw rolling technology makes it possible to carry out deformation of the billet under the influence of intra-focal axial tension. The task is accomplished by rolls calibration when at the beginning there is a ridge section of the roll on which the axial force is directed against rolling direction; and behind it, a pulling one, on which the direction of the axial force coincides with rolling direction. Such a scheme of the axial forces action in the zone of intensive billet reduction creates the most favorable conditions for the metal flow in axial direction. A technical solution is proposed for the implementation of the stage of the billet gripping by rolls, and description of this stage and the process stationary phase is given. The cardinal change in the billet deformation condition after modernization makes it possible to reduce the power load on the work rolls, increase their efficiency and reduce energy costs during rolling. This will ensure the rolling of a solid billet in a roughing mill with a higher stretch, create the preconditions for expanding the size and grade assortment when obtaining rods in radial-displacement rolling mills and at production of pipes in rolling lines with the Assel mill. The range of finished products can be significantly expanded due to the production of thin-walled highprecision pipes.

About the Authors

Zh. Ya. Rotenberg
LLC Ural Scientific Research Technological Institute
Russian Federation

Zhozef Ya. Rotenberg, Cand. Sci. (Eng.), Assist. Prof.

room 304, bld. 31, Lunacharskogo Str., Yekaterinburg 620133



A. S. Budnikov
National University of Science and Technology “MISIS”
Russian Federation

Aleksei S. Budnikov, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Metal Forming”

4 Leninskii Ave., Moscow 119049



References

1. Rotenberg Zh.Ya. Roll feed rate of screw rolling mill. Abstract of the manuscript. VINITI Bibliographic Index “Deposited Scientific Works”. 1988, no. 10, p. 187. (In Russ.).

2. Bellman M., Kümmerling R. Optimierung des Spreizwinkels von Lochschrägwalzwerken für die Herstellung nahtloser Rohre. Stahl und Eisen. 1993, vol. 113, no. 9, pp. 111–117. (In Germ.).

3. Aleshchenko A.S., Budnikov A.S., Kharitonov E.A. Metal forming during pipes reduction on a three-high rolling mill. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 10. pp. 756–762. (In Russ.). https://doi.org/10.17073/0368-0797-2019-10-756-762

4. Romantsev B.A., Kharitonov E.A., Budnikov A.S., Le V.Ch., Chan B.Kh. Screw rolling of pipes in a four-high rolling mill. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 9, pp. 686–690. (In Russ.). https://doi.org/10.17073/0368-0797-2019-9-686-690

5. Skripalenko M.M., Chan B.Kh., Romantsev B.A., Galkin S.P., Samusev S.V. Investigation of the features of billet stress-strain state at different screw rolling schemes using computer simulation. Stal’. 2019, no. 2, pp. 35–39. (In Russ.).

6. Zinov’ev A.V., Koshmin A.N., Chasnikov A.Ya. Effect of continuous extrusion parameters on alloy M1 round section bar microstructure and mechanical property formation. Metallurgist. 2019, vol. 63, no. 3–4, pp. 422–428. https://doi.org/10.1007/s11015-019-00838-3

7. Fomin A.V., Aleshchenko A.S., Maslenniko I.M., Galkin S.P., Nikulin A.N. Structural and analytical evaluation of the strain intensity and its components during cross-roll piercing at different feed angles. Metallurgist. 2019, vol. 63, no. 5–6, pp. 477–486. https://doi.org/10.1007/s11015-019-00848-1

8. Pehle H.J., Krahn M.V., Horst Ch.A. Verfahren und Vorrichtung zum Herstellen eines Hohlblocks aus einem Block. Patent DE 102010047868, MPK B21B 19/04. Publ. 07.10.2010. (In Germ.).

9. Rotenberg Zh.Ya., Osadchii V.Ya., Nodev E.O., Urin Yu.L. Analytical model of screw piercing process. In: Improvement of Metal Forming Processes: Interuniversity Transactions of All-Un. CEI. Moscow: 1982, pp. 78–92. (In Russ.).

10. Shurkin P.K., Akopyan T.K., Galkin S.P., Aleshchenko A.S. Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al – Zn – Mg – Ni – Fe system. Metal Science and Heat Treatment. 2019, vol. 60, no. 11–12, pp. 764–769. http://doi.org/10.1007/s11041-019-00353-x

11. Akopyan T.K., Gamin Y.V., Galkin S.P., Prosviryakov A.S., Aleshchenko A.S., Noshin M.A., Koshmin A.N., Fomin A.V. Radialshear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties. Materials Science and Engineering A. 2020, vol. 786, article 139424. https://doi.org/10.1016/j.msea.2020.139424

12. Karpov B.V., Skripalenko M.M., Galkin S.P. Studying the nonstationary stages of screw rolling of billets with profiled ends. Metallurgist. 2017, vol. 61, no. 3–4, pp. 257–264. http://doi.org/10.1007/s11015-017-0486-9

13. Goncharuk A.V., Fadeev V.A., Kadach M.V. Seamless pipes manufacturing process improvement using mandreling. Solid State Phenomena. 2021, vol. 316, pp. 402–407.

14. Naizabekov A., Arbuz A., Lezhnev S., Panin E. Study of technology for ultrafine-grained materials for usage as materials in nuclear power. New Trends in Production Engineering. 2019, vol. 2, no. 2, pp. 114–125.

15. Lezhnev S.N., Naizabekov A.B., Panin E.A., Volokitina I.E., Arbuz A.S. Graded microstructure preparation in austenitic stainless steel during radial-shear rolling. Metallurgist. 2021, vol. 64, no. 11–12, pp. 1150–1159. https://doi.org/10.1007/s11015-021-01100-5

16. Wang F.-J., Shuang Y.-H., Hu J.-H., Wang Q.-H., Sun J.-C. Explorative study of tandem skew rolling process for producing seamless steel tubes. Journal of Materials Processing Technology. 2014, vol. 214, no. 8, pp. 1597–1604. https://doi.org/10.1016/j.jmatprotec.2014.03.002

17. Mashekov S., Nurtazaev E., Mashekova A., Abishkenov M. Extruding aluminum bars on a new structure radial shear mill. Metalurgija. 2021, vol. 60, no. 3-4, pp. 427–430.

18. Mashekov S.A., Absadykov B.N., Mashekova A.S. Investigation of the kinematics of rolling ribs and pipes on a continuous radialshifting mill of a new construction. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2018, vol. 3, no. 430, pp. 98–109.

19. Pater Z., Tomczak J., Bulzak T. Numerical analysis of the skew rolling process for main shafts. Metalurgija. 2015, vol. 54. no 4, pp. 627–630.

20. Roller E. Verfahren zum Kaltwalzen von nahtlosen Kupferrohren. Patent DE 10107567, MPK B21B19/06. Publ. 29.08.2002. (In Germ.).

21. Lü C.Q., Guo D., Gao H.F., Yang Z.L., Ju Y.H. Effect of helical deformation on fatigue life of torsion shaft by rolling. Suxing Gongcheng Xuebao Journal of Plasticity Engineering. 2019, vol. 26, no. 2, pp. 177–184. https://doi.org/10.3969/j.issn.1007-2012.2019.02.023

22. Cao Q., Hua L., Qian D. Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls. Journal of Central South University. 2015, vol. 22, no. 4, pp. 1175−1183. https://doi.org/10.1007/s11771-015-2631-6

23. Shevakin Yu.F., Gleiberg A.Z. Pipe Production. Moscow: Metallurgiya, 1968, 440 p. (In Russ.).

24. Teterin P.K. Theory of Screw Rolling. Moscow: Metallurgiya, 1971, 368 p. (In Russ.).

25. Rotenberg Zh. Verfahren zum Schrägwalzen von zylindrischen Erzeugnissen. Patent DE 102012007379, MPK B 21 B 27/037. Publ. 2016.12.29. (In Germ.).


Review

For citations:


Rotenberg Zh.Ya., Budnikov A.S. Modernization of screw rolling technology in a multi-roll mill. Izvestiya. Ferrous Metallurgy. 2022;65(1):28-34. (In Russ.) https://doi.org/10.17073/0368-0797-2022-1-28-34

Views: 460


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)