Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Potential for obtaining and applying complex niobium ferroalloys

https://doi.org/10.17073/0368-0797-2022-1-10-20

Abstract

This paper provides information regarding the application of niobium in industry and the scale of its production in the world and the Russian Federation. Most of the niobium deposits in Russia consist of pyrochlore, apatitepyrochlore and columbitepyrochlore types of ores. They contain a significant amount of phosphorus. Therefore, all enrichment schemes for these ores contain a dephosphorization stage which increases the price of the product and reduces the degree of niobium extraction. The paper explores the possibility of improving the end-to-end production scheme: niobium ore – beneficiation – niobium ferroalloy. The bulk of ferroniobium is intended for steel microalloying and can be replaced by complex ferroalloys with a reduced niobium content. The paper considers the issues of obtaining complex niobium ferroalloys from a rough concentrate with a weak content of niobium. It has been established that the addition of 25 – 40 % of silicon or 12 – 30 % of aliminum to the twocomponent metal system Fe – Nb causes the transfer of niobium ferroalloys (15 – 20 % Nb) from the refractory category to lowmelting materials. The crystallization temperatures are less than 1400 °C. The substantiation of using a complex niobium ferroalloy instead of ferroniobium is given. This alloy has reduced niobium content and increased silicon or aluminum content. Higher service characteristics of the complex ferroalloy are noted in comparison with ferroniobium (temperature of the initiation of crystallization and density). They indicate an increased assimilation of niobium when using a complex ferroalloy for steel microalloying. The paper presents data on the possibility of dephosphorization of niobium concentrates in the process of pyrometallurgical production of a complex ferroalloy. An improved scheme for the production of niobiumcontaining ferroalloys is proposed. This consists of the use of niobium concentrate for melting the intermediate ferroalloy containing a reduced concentration of niobium oxides and an increased concentration of silicon (aluminum). This ferroalloy can be used effectively for steel microalloying with niobium.

About the Authors

L. I. Leont’ev
Institute of Metallurgy, Ural Branch of the Russian Academy of Science; National University of Science and Technology “MISIS”; Russian Academy of Sciences
Russian Federation

Leopol’d I. Leont’ev, Academician, Adviser, Russian Academy of Sciences; Dr. Sci. (Eng.), Prof., National University of Science and Technology “MISIS”; Chief Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science

101 Amundsena Str., Yekaterinburg 620016

4 Leninskii Ave., Moscow 119049

32a Leninskii Ave., Moscow 119991



V. I. Zhuchkov
Institute of Metallurgy, Ural Branch of the Russian Academy of Science
Russian Federation

Vladimir I. Zhuchkov, Dr. Sci. (Eng.), Prof., Chief Researcher of the Laboratory of Steel and Ferroalloys

101 Amundsena Str., Yekaterinburg 620016



O. V. Zayakin
Institute of Metallurgy, Ural Branch of the Russian Academy of Science
Russian Federation

Oleg V. Zayakin, Dr. Sci. (Eng.), Chief Researcher, Head of the Laboratory of Steel and Ferroalloys

101 Amundsena Str., Yekaterinburg 620016



A. V. Sychev
Institute of Metallurgy, Ural Branch of the Russian Academy of Science
Russian Federation

Aleksandr V. Sychev, Cand. Sci. (Eng.), Senior Researcher of Steel and Ferroalloys

101 Amundsena Str., Yekaterinburg 620016



L. Yu. Mikhailova
Institute of Metallurgy, Ural Branch of the Russian Academy of Science
Russian Federation

Lyudmila Yu. Mikhailova, Cand. Sci. (Eng.), Research Associate of the Laboratory of Steel and Ferroalloys

101 Amundsena Str., Yekaterinburg 620016



References

1. Information and technical guide to the best available technologies. ITS 24-2017. Production of rare and rare earth metals. Moscow: Byuro NDT, 2017, 202 p. (In Russ.).

2. Bykhovskiy L.Z., Arkhipova N.A. Strategic rare metal supply in Russia: Current state & future prospects. Gornyi zhurnal. 2017, no.7, pp. 4–10. (In Russ.). https://doi.org/10.17580/gzh.2017.07.01

3. Dufresne C., Goyette G. The production of ferroniobium at the Niobec mine. In: Niobium, Science and Technology: Proceedings of the Int. Symp. Niobium 2001. Orlando, FL, United States, 2001, Code 62351, pp. 29–35.

4. Geologica U.S. Mineral Commodity Summaries. U.S. Geological Survey, Reston, 2016, p. 117.

5. Volkov A.I. State and prospects for use of rare metals in ferrous metallurgy. Razvedka i okhrana nedr. 2020, no. 3, pp. 11–18. (In Russ.).

6. Nechaev A.V., Polyakov E.G., Belousov E.B., Pikalova V.S., Bykhovskii L.Z. Mineral resource base of niobium in Russia: Development priorities. Mineral’nye resursy Rossii. Ekonomika i upravlenie. 2020, no. 4–5, pp. 8–15. (In Russ.).

7. Silvestre L., Langenberg P., Amaral T., Carboni M., Meira M., Jordão A. Use of niobium high strength steels with 450 MPA yield strength for construction. In: HSLA Steels 2015, Microalloying 2015 and Offshore Engineering Steels 2015 Conf. Proceedings, pp. 931–939.

8. Nikishina E.E., Drobot D.V., Lebedeva E.N. Niobium and tantalum: State of the world market, application fields, and sources of raw materials. Part 2. Russian Journal of Non-Ferrous Metals. 2014, vol.55, no. 2, pp. 130–140.

9. Lisov V.I. Rare Metals of Russia: A Resource for Technological Innovation. Moscow: TsentrLitNeftegaz, 2018, 509 p. (In Russ.).

10. Melent’ev G.B. Prospects for the provision of own rare-metal raw materials and development of ferroniobium production in Russia. In: Theoretical and Practical Conf. with Int. Participation and School for Young Scientists “FERROALLOYS: Development prospects of metallurgy and machine building based on completed Research and Development”. Yekaterinburg: Al’fa-Print, 2018, pp. 36–46 (In Russ.).

11. Paraiso-Fo O.D.S., Fuccio R., Betz E.W. Mining, ore preparation and niobium based materials production at Araxа, Brazil. High Temperature Materials and Processes. 1993, vol. 11, no. 1–4, pp.119–138.

12. Alves A.R., Coutinho A.R. Life cycle assessment of niobium: A mining and production case study in Brazill. Minerals Engineering. 2019, vol. 132, pp. 275–283.

13. Wang G., Du Y.X., Wang J.S., Xue Q.G. Carbothermic reduction behaviors of Ti–Nb-bearing Fe concentrate from Bayan Obo ore in China. International Journal of Minerals, Metallurgy and Materials. 2018, vol. 25, no. 1, pp. 28–36. https://doi.org/10.1007/s12613-018-1543-5

14. Zhang Q.F. Analysis on mineralogical characteristics of niobiumbearing resources in Baiyunebo deposit. Nonferrous Metals. 2005, vol. 57, no. 2, pp. 111.

15. State report “State and Use of Mineral Resources of the Russian Federation in 2019”. Moscow: All-Russian Research Geological Oil Institute, Gidrospetsgeologiya, 2019, 426 р. (In Russ.).

16. Alves A.R., Coutinho A.R. The evolution of niobium production in Brazil. Materials Research. 2015, vol. 18, no. 1, pp. 106–112. https://doi.org/10.1590/1516-1439.276414

17. Bykhovskii L.Z., Arkhipova N.A. Rare-metal raw materials of Russia: Prospects and development of mineral resource base. Razvedka i okhrana nedr. 2016, no. 11, pp. 26–30 (In Russ.).

18. Mashkovtsev G.A., Bakanova T.V. On mineral resources for ferroalloy production. In: Theoretical and Practical Conf. with Int. Participation and School for Young Scientists “FERROALLOYS: Development prospects of metallurgy and machine building based on completed Research and Development”. 2019, pp. 29–45.

19. Morozova L.N., Bayanova T.B., Bazai A.V., Lyalina L.M., Serov P.A., Borisenko E.S., Kunakkuzin E.L. Rare metal pegmatites of the Kolmozero lithium deposit in the Arctic region of the Baltic shield: New geochronological data. Vestnik Kol’skogo nauchnogo tsentra RAN. 2017, no. 1 (9), pp. 43–52. (In Russ.).

20. Tolstov A.V., Samsonov N.Yu. Tomtor: geology, technology, economics. EKO. 2014, no. 2 (476), pp. 36–44. (In Russ.).

21. New Mineral and Raw Metallurgical Complexes in Russia (Brief Overview). Mashkovtsev G.А. ed. Moscow: VIMS, 2007, 44 р. (In Russ.).

22. Nechaev A.V., Smirnov A.V., Sibilev A.S., etc. Hydrometallurgical processing of columbite concentrate from the Zashikhinsky deposit. Khimicheskaya tekhnologiya. 2017, vol. 18, no. 2, pp. 81–88. (In Russ.).

23. Maslov A.A., Ostval’d R.V., Shagalov V.V., Maslova E.S., Gorenyuk Yu.S. Chemical Technology of Niobium and Tantalum. Tomsk: Tomskii politekhnicheskii universitet, 2010, 97 р. (In Russ.).

24. Liu M.D., You Z.X., Peng Z.W. Enrichment of rare earth and niobium from a REE–Nb–Fe associated ore via reductive roasting followed by magnetic separation. JOM. 2016, vol. 68, no. 2, pp. 567–576. https://doi.org/10.1007/s11837-015-1679-y

25. Xv J., Bulin C.K., Zhao R.C. Recovering iron and beneficiating niobium from rough niobium concentrate by magnetization roast– magnetic separation process. Hydrometallurgy China. 2013, vol. 32, no.2, pp. 75.

26. Jiang M., Sun T.C., Kou J., Ji Y., Xu Y. Distribution behavior of niobium in process of coal-based direct reduction roasting of Nbbearing iron concentrates. Xiyou Jinshu/Chinese Journal of Rare Metals. 2011, vol. 35, no. 5, p. 731–735. https://doi.org/10.3969/j.issn.0258-7076.2011.05.019

27. Zhuchkov V.I., Andreev N.A., Zayakin O.V., Ostrovskii Ya.I., Afanas’ev V.I. Composition and performance of chromium-bearing ferroalloys. Steel in Translation. 2013, vol. 43, no. 5, pp. 306–308. https://doi.org/10.3103/S0967091213050240

28. Gasik M.I., Gladkikh V.A., Zhdanov A.V., Zhuchkov V.I., Zayakin O.V., Leont’ev L.I., Ovcharuk A.N. Calculation of the value of manganese ore raw materials. Russian Metallurgy (Metally). 2009, vol.2009, no. 8, pp. 756–758. https://doi.org/10.1134/S0036029509080175

29. Smirnov L.A., Zhuchkov V.I., Zayakin O.V., Mikhailova L.Yu. Complex vanadium – containing ferroalloys. Metallurgist. 2021, vol. 64, no. 11–12, pp. 1249–1255. https://doi.org/10.1007/s11015-021-01112-1

30. Esenzhulov A.B., Ostrovskii Ya.I., Afanas’ev V.I., Zayakin O.V., Zhuchkov V.I. Russian chromium ore in smelting high-carbon ferrochrome at OAO SZF. Steel in Translation. 2008, vol. 38, no. 4, pp.315–317. https://doi.org/10.3103/S096709120804013X

31. Yessengaliyev D., Baisanov S., Issagulov A., Zayakin O., Abdirashit A. Thermodynamic diagram analysis (TDA) of MnO–CaO– Аl2O3 –SiO2 and phase composition of slag in refined ferromanganese production. Metalurgija. 2019, vol. 58, no. 3–4, pp. 291–294.

32. Zhuchkov V.I., Zayakin O.V., Leont’ev L.I., Esenzhulov A.B., Ostrovskii Yа.I. Main trends in the processing of poor chrome ore raw materials. Russian Metallurgy (Metally). 2008, vol. 2008, no. 8, pp.709–712. https://doi.org/10.1134/S0036029508080132

33. Zayakin O.V., Zhuchkov V.I., Lozovaya E.Yu. Melting time of nickel-bearing ferroalloys in steel. Steel in Translation. 2007, vol. 37, no. 5, pp. 416–418. https://doi.org/10.3103/S0967091207050038

34. Andreev N.A., Zhuchkov V.I., Zayakin O.V. Density of chromium-containing ferroalloys. Russian Metallurgy (Metally). 2013, vol.2013, no. 6, pp. 418–419. https://doi.org/10.1134/S0036029513060025

35. Akuov А., Samuratov Y., Kelamanov B., Zhumagaliyev Y., Taizhigitova M. Development of an alternative technology for the production of refined ferrochrome. Metalurgija. 2020, vol. 59, no. 4, pp. 529–532.

36. Zhuchkov V.I., Zayakin O.V., Mikhailova L.Yu. Physical Chemistry and Technology in Ferroalloy Metallurgy. Yekaterinburg: Al’fa Print, 2021, 272 р. (In Russ.).

37. Zhuckov V.I., Zayakin O.V., Mikhailova L.Yu. Obtaining of niobium-containing ferroalloys from the Russian ore raw materials. IOP Conference Series: Materials Science and Engineering. 2020, vol.966, article 012037. http://doi.org/10.1088/1757-899X/966/1/012037

38. Roine A. Outokumpu HSC Chemistry for Windows. Chemical Reactions and Equilibrium Software with Extensive Thermochemical Database. Pori: Outokumpu research OY, 2002, 268 р.

39. Zayakin O.V., Mikhailova L.Yu., Upolovnikova A.G., etc. Thermodynamic analysis of silicothermal production of ferroalloys from niobium-containing concentrates. In: Proceedings of the Congress with Int. Participation and Conf. of Young Scientists “Fundamental Research and Applied Development of Processing and Disposal of Technogenic Formations”: “TECHNOGEN-2021”. Yekaterinburg: UrB RAS, 2021, pp. 202–205. (In Russ.).


Review

For citations:


Leont’ev L.I., Zhuchkov V.I., Zayakin O.V., Sychev A.V., Mikhailova L.Yu. Potential for obtaining and applying complex niobium ferroalloys. Izvestiya. Ferrous Metallurgy. 2022;65(1):10-20. https://doi.org/10.17073/0368-0797-2022-1-10-20

Views: 656


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)