Reduction of equipment unplanned downtime during repairs and modernization based on strength analysis
https://doi.org/10.17073/0368-0797-2021-12-895-902
Abstract
In order to identify bottlenecks in the equipment operation and accumulate data for the development of organizational and technical measures to reduce unplanned equipment downtime, JSC “Vyksa Metallurgical Plant” keeps records of downtime of the main technological equipment. All equipment downtime is recorded by production personnel in the automated analysis system of the workshop. Reliability specialists in the workshops have classified all units into criticality categories, which are presented in the form of a matrix that includes two groups of indicators: 1) severity of the consequences – personnel safety, safety of equipment and environment, production losses, troubleshooting costs; 2) probability of occurrence – high, medium, low, or very low. When determining the criticality assessment of an equipment unit, the most critical case of equipment failure and the worst one are considered. Classification of equipment by criticality categories is used to rank equipment in terms of reliability. The article considers the criteria for operability of machine parts, as well as the main software complexes for strength analysis that exist today. Two have been selected that will be used as strength analysis tools. The analysis of equipment unplanned downtime due to the destruction of parts was carried out on the example of the wheel rolling shop of JSC “Vyksa Metallurgical Plant”, unloaded from the shop automatic analysis system. The authors proposed the directions of application of the selected strength analysis tools and made the strength analysis of equipment parts in order to increase their structural reliability. An assessment of the potential economic effect of introduction of strength analysis tools showed the feasibility of using this innovative approach leading to downtime reduction.
Keywords
About the Authors
N. A. ChichenevRussian Federation
Nikolai A. Chichenev, Dr. Sci. (Eng.), Prof. of the Chair “Engineering of Technological Equipment”
4 Leninskii Ave., Moscow 119049
S. M. Gorbatyuk
Russian Federation
Sergei M. Gorbatyuk, Dr. Sci. (Eng.), Prof., Head of the Chair “Engineering of Technological Equipment”
4 Leninskii Ave., Moscow 119049
206 Kalinina Str., Shimorskoe, Vyksa District, Nizhny Novgorod Region 607060
T. Yu. Gorovaya
Russian Federation
Tat’yana Yu. Gorovaya, Deputy Director
206 Kalinina Str., Shimorskoe, Vyksa District, Nizhny Novgorod Region 607060
A. N. Fortunatov
Russian Federation
Aleksandr N. Fortunatov, Assist. Prof. of the Chair “Technology and Equipment for Metal Forming”
206 Kalinina Str., Shimorskoe, Vyksa District, Nizhny Novgorod Region 607060
References
1. Mayrhofer A., Hartl F., Rohrhofer A., Stohl K. New condition monitoring applications in steelmaking. Stahl und Eisen. 2017, vol. 137, no. 11, pp. 147–156. (In Germ.).
2. Gorbatyuk S.M., Pashkov A.N., Morozova I.G., Chicheneva O.N. Technologies for applying NiAu coatings to heat sinks of SiCAl metal matrix composite material. Materials Today: Proceedings. 2021, vol. 38, pp. 1889–1893. https://doi.org/10.1016/j.matpr.2020.08.581
3. Savel’ev A.N., Sever’yanov S.S. Assessment of units’ performance of CCM technological line. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 12. pp. 972–978. (In Russ.). https://doi.org/10.17073/0368-0797-2019-12-972-978
4. Eron’ko S.P., Danilov V.L., Kuklev A.V., Tkachev M.Yu., Tinyakov V.V., Mechik S.V. Experience of design and industrial application of systems for the driven feed of slag-forming mixtures into the crystallizers of slab CCM. Metallurgist. 2020, vol. 64, no. 3–4, pp. 214–222. https://doi.org/10.1007/s11015-020-00986-x
5. Roberov I.G., Kokhan L.S., Morozov Yu.A., Borisov A.V. Relief stamping with grooveless rolling practice. Izvestiya. Ferrous Metallurgy. 2009, no. 1, pp. 27–30. (In Russ.).
6. Zhareken A.Zh., Dzhumaliev A.S. Burning furnace cooling circuit refitting. Gornyi zhurnal. 2018, no. 5, pp. 34–35. (In Russ.).
7. Kalinenko Yu.N., Kamenev A.A., Mit’kin A.V., Kireenkov A.N. Reengineering of roasting machines at pelletizing factory. Gornyi zhurnal. 2017, no. 5, pp. 67–69. (In Russ.). https://doi.org/10.17580/gzh.2017.05.15
8. Gorbatyuk S.M., Morozova I.G., Naumova M.G. Development of the working model of production reindustrialization of die steel heat treatment. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 5, pp. 410–415. (In Russ.). https://doi.org/10.17073/0368-0797-2017-5-410-415
9. Gorbatyuk S.M., Zarapin A.Yu., Chichenev N.A. Reengineering of spiral classifier of Catoca mining company ltd, Angola. Mining Informational and Analytical Bulletin. 2018, vol. 2018, no. 2, pp. 215–221. https://doi.org/10.25018/0236-1493-2018-2-0-215-221
10. Nefedov A.V., Svichkar V.V., Chicheneva O.N. Reengineering of equipment to feed the melting furnace with aluminum charge. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Radionov A.A., Gasiyarov V.R. eds. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021, pp. 1198–1204. https://doi.org/10.1007/978-3-030-54817-9_139
11. Koryak A.V., Chichenev N.A. Reengineering of a running trolley with container in EAF. Stal’. 2020, no. 1, pp. 36–39. (In Russ.).
12. Chichenev N.A. Reengineering of the slabcentering unit of a roughing mill stand. Metallurgist. 2018, vol. 62, no. 7–8, pp. 701–706. https://doi.org/10.1007/s11015-018-0711-1
13. Efremov D.B., Stepanov V.M., Chicheneva O.N. Modernization of the mechanism for rapid pressing of rolls of the rolling stand of the DUO mill 2800 of Ural Steel JSC. Stal’. 2020, no. 8, pp. 44–47. (In Russ.).
14. Masini R., Lainati A. Latest bar mill technology. Millenium Steel. 2005, pp. 216227.
15. Thome R., Harste K. Principles of billet soft-reduction and consequences for continuous casting. ISIJ International. 2006, vol. 46, no. 12, pp. 1839–1844. https://doi.org/10.2355/isijinternational.46.1839
16. Rumyantsev M.I. Some approaches to improve the resource efficiency of production of flat rolled steel. CIS Iron and Steel Review. 2016, vol. 12, pp. 32–36. https://doi.org/10.17580/cisisr.2016.02.07
17. Bruyaka V.A., Fokin V.G., Soldusova E.A., Glazunova N.A., Adeyanov I.E. Engineering Analysis in ANSYS Workbench: Manual. Samara: SSTU, 2010, 271 p. (In Russ.).
18. Kaplun A.B., Morozov E.M., Olfer’eva M.A. ANSYS in Hands of Engineer: Practical guide. Moscow: Editorial URSS, 2003, 272 p. (In Russ.).
19. Zhidkov A.V. Application of ANSYS System to Solving Problems of Geometric and Finite Element Modeling. Nizhny Novgorod: NSU im. N.I. Lobachevskogo, 2006, 115 p. (In Russ.).
20. APM FEM. Strength Analysis System for COMPASS3D. Version for COMPASS3D V16 User Manual. Korolev: NTTs “APM”, 2015, 28 p. (In Russ.).
21. Snitko S.A., Yakovchenko A.V., Gorbatyuk S.M. Accounting method for residual technological stresses in modeling the stressdeformed state of a railway wheel disk. Report 1. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 5, pp. 337–344. (In Russ.). https://doi.org/10.17073/0368-0797-2021-5-337-344
22. Ganin N.B. Design and Strength Calculation in COMPASS3D V13 System: Manual. Moscow: DMK Press, 2011, 320 p. (In Russ.).
23. Eron’ko S.P., Danilov V.L., Tkachev M.Yu., Tinyakov V.V., Ponomareva E.A. Model studies and modernization of a manipulator for tapping spout replacement in continuous steel casting. Metallurgist. 2020, vol. 64, no. 3–4, pp. 301–308. https://doi.org/10.1007/s11015-020-00996-9
24. Kudashov D.V., Martin U., Heilmaier M., Oettel H. Creep behaviour of ultrafinegrained oxide dispersion strengthened copper prepared by cryomilling. Materials Science and Engineering: A. 2004, vol. 387–389, pp. 639–642. https://doi.org/10.1016/j.msea.2004.01.118
25. Gruner W., Kudashov D.V., Martin U. Determination of oxygen species in mechanically alloyed oxide dispersion strengthened copper. Powder Metallurgy. 2002, vol. 45, no. 4, pp. 301–306. https://doi.org/10.1179/003258902225007104
26. Kudashov D.V., Aksenov A.A., Klemm V., Martin U., Oettel H., Portnoy V.K., Zolotorevskii V.S. Microstructure formations in copper-silicon carbide composites during mechanical alloying in a planetary activator. Materialwissenschaft und Werkstofftechnik. 2020, vol. 31, no. 12, pp. 1048–1055. http://doi.org/10.1002/15214052(200012)31:12<1048::AID-MAWE1048>3.0.CO;2-D
27. Samusev S.V., Lyuskin A.V., Romantsov A.I., Zhigunov K.L., Fortunatov A.N. Research of the deformation zone on stepwise molding press in conditions of JSC “Cherepovets PipeRolling Plant”. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 3, pp. 49–52. (In Russ.). https://doi.org/10.17073/0368-0797-2014-3-49-52
28. Samusev S.V., Lyuskin A.V., Romantsov A.I., Zhigunov K.L., Fortunatov A.N. Calculating tool parameters for standardized welded pipe groups in edge-bending presses. Izvestiya. Ferrous Metallurgy. 2013, vol. 56, no. 5, pp. 20–22. (In Russ.). https://doi.org/10.17073/0368-0797-2013-3-20-22
29. ElSayed T.A., Algash Y.A. Flexural behavior of ultrahigh performance geopolymer RC beams reinforced with GFRP bars. Case Studies in Construction Materials. 2021, vol. 15, article e00604. https://doi.org/10.1016/j.cscm.2021.e00604
30. Alshoaibi A.M. Computational simulation of 3D fatigue crack growth under mixed-mode loading. Applied Sciences. 2021, vol. 11, no. 13, article 5953. https://doi.org/10.3390/app11135953
31. Papukchiev A., Yang Z. Application of the coupled code ATHLET ANSYS CFX for the simulation of the flow mixing inside the ROCOM test facility. Progress in Nuclear Energy. 2021, vol. 137, article 103785. https://doi.org/10.1016/j.pnucene.2021.103785
32. Instruction I.20440.8. Procedure for Analyzing Types, Consequen ces and Criticality of Failures. Vyksa: VMZ, 2019, 16 p. (In Russ.).
33. Vasil’ev V.A., Kalandarishvili Sh.N., Novikov V.A., Odinokov S.A. Quality Management and Certification: Manual. Moscow: Intermet Inzhiniring, 2002, 413 p. (In Russ.).
34. Grodzenskii S.Ya. Quality Management: Textbook. Moscow: Prospekt, 2017, 222 p. (In Russ.).
35. Chagina A.V., Bol’shakov V.P. 3D Modeling in COMPASS3D of Versions v17 and Higher. Manual. St. Petersburg: Piter, 2021, 256 p. (In Russ.).
36. Bilalov R.A., Smetannikov O.Yu. Numerical investigation of fluid dynamics phenomena in external gear pump. Computational Continuum Mechanics. 2021, vol. 13, no. 4, pp. 471480. (In Russ.). https://doi.org/10.7242/1999-6691/2020.13.4.37
37. Muszyński Z., Rybak J. Evaluation of terrestrial laser scanner accuracy in the control of hydrotechnical structures. Studia Geotechnica et Mechanica. 2017, vol. 39, no. 4, pp. 45–57. https://doi.org/10.1515/sgem-2017-0036
38. Rybak J., Baca M., Zyrek T. Practical aspects of tubular pile axial capacity testing. Int. Multidisc. Sci. GeoConference “Surveying Geology and Mining Ecology Management, SGEM”. 2015, vol. 2, no. 1, pp. 549554.
39. Anghel C., Gupta K., Jen T.C. Analysis and optimization of surface quality of stainless steel miniature gears manufactured by CO2 laser cutting. Optik. 2020, vol. 203, article 164049. https://doi.org/10.1016/j.ijleo.2019.164049
Review
For citations:
Chichenev N.A., Gorbatyuk S.M., Gorovaya T.Yu., Fortunatov A.N. Reduction of equipment unplanned downtime during repairs and modernization based on strength analysis. Izvestiya. Ferrous Metallurgy. 2021;64(12):895-902. (In Russ.) https://doi.org/10.17073/0368-0797-2021-12-895-902