Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Media corrosiveness and materials resistance at presence of aggressive carbon dioxide

https://doi.org/10.17073/0368-0797-2021-11-793-801

Abstract

At the present stage of gas field development, the products of many mining facilities have increased content of corrosive CO2 . The corrosive effect of CO2 on steel equipment and pipelines is determined by the conditions of its use. CO2 has a potentially wide range of usage at oil and gas facilities for solving technological problems (during production, transportation, storage, etc.). Simulation tests and analysis were carried out to assess the corrosion effect of CO2 on typical steels (carbon, low-alloy and alloyed) used at field facilities. Gas production facilities demonstrate several corrosion formation zones: lower part of the pipe (when moisture accumulates) and top of the pipe (in case of moisture condensation). The authors have analyzed the main factors influencing the intensity of carbon dioxide corrosion processes at hydrocarbon production with CO2 , its storage and use for various technological purposes. The main mechanism for development of carbon dioxide corrosion is presence/condensation of moisture, which triggers the corrosion process, including the formation of local defects (pits, etc.). X-ray diffraction was used for the analysis of corrosion products formed on the steel surface, which can have different protective characteristics depending on the phase state (amorphous or crystalline).

About the Authors

R. R. Kantyukov
Scientific-Research Institute of Natural Gases and Gas Technologies - “Gazprom VNIIGAZ”
Russian Federation

Rafael' R. Kantyukov - Cand. Sci. (Eng.), Deputy General Director for Research, Scientific-Research Institute of Natural Gases and Gas Technologies - “Gazprom VNIIGAZ”.

Razvilka Village, Moscow Region 142717.



D. N. Zapevalov
Scientific-Research Institute of Natural Gases and Gas Technologies - “Gazprom VNIIGAZ”
Russian Federation

Dmitrii N. Zapevalov - Cand. Sci. (Eng.), Head of the Corporate Scientific and Technical Center for Corrosion Monitoring and Protection, Scientific-Research Institute of Natural Gases and Gas Technologies - “Gazprom VNIIGAZ”.

Razvilka Village, Moscow Region 142717.



R. K. Vagapov
Scientific-Research Institute of Natural Gases and Gas Technologies - “Gazprom VNIIGAZ”
Russian Federation

Ruslan K. Vagapov - Cand. Sci. (Chem.), Head of the Laboratory of Atmospheric and Internal Corrosion Protection, Scientific-Research Institute of Natural Gases and Gas Technologies - “Gazprom VNIIGAZ”.

Razvilka Village, Moscow Region 142717.



References

1. Zapevalov D., Vagapov R. Possibilities and limitations of the organization of anticorrosion protection at gas production facilities. E3S Web of Conferences. 2021, vol. 225, article 03002. http://doi.org/10.1051/e3sconf/202122503002

2. Kantyukov R.R., Zapevalov D.N., Vagapov R.K. Hazard assessment of internal carbon dioxide corrosion of field pipelines at gas and gas condensate fields. Bezopasnost' truda v promyshlennosti. 2021, no. 2, pp. 56-62. (In Russ.).

3. Yaro A.S., Abdul-Khalik K.R., Khadom A.A. Effect of CO2 corrosion behavior of mild steel in oilfield produced water. Journal of Loss Prevention in the Process Industries. 2015, vol. 38, pp. 24-38. https://doi.org/10.1016/j.jlp.2015.08.003

4. Aslanyan A.M., Aslanyan I.Yu., Kantyukov R.R., etc. Implementation of advanced passive acoustics hardware and software complex for well integrity diagnostics. Bezopasnost' truda v promyshlennosti. 2020, no. 11, pp. 56-62. (In Russ.).

5. Ryazantsev M.V., Lozin E.V. Carbon dioxide flooding: history of world and local investigations. OIJ. 2020, no. 7, pp. 100-103. (In Russ.). https://doi.org/10.24887/0028-2448-2020-7-100-103

6. Il'inova А.А., Romasheva N.V., Stroikov G.A. Prospects and social effects of carbon dioxide sequestration and utilization projects. Za-piski Gornogo Instituta. 2020, vol. 244, pp. 493-502. (In Russ.).

7. Khan S.A. The analysis of world projects on catching and burial place of carbonic gas. Georesursy. 2010, no. 4(36), pp. 55-62. (In Russ.).

8. Onyebuchi V.E., Kolios A., Hanak D.P., etc. A systematic review of key challenges of CO2 transport via pipelines. Renewable and Sustainable Energy Reviews. 2018, vol. 81, part 2, pp. 2563-2583. https://doi.org/10.1016/j.rser.2017.06.064

9. He M., Luis S., Rita S., Ana G., Euripedes V.Jr., Zhang N. Risk assessment of CO2 injection processes and storage in carboniferous formations: A review. Journal of Rock Mechanics and Geotechnical Engineering. 2011, vol. 3, no. 1, pp. 39-56. https://doi.org/10.3724/SP.J.1235.2011.00039

10. Choi Y.-S., Young D., Nesic S., Gray L.G.S. Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: A literature review. International Journal of Greenhouse Gas Control. 2013, vol. 16S, pp. S70-S77. https://doi.org/10.1016/j.ijggc.2012.12.028

11. Vagapov R.K., Ibatullin K.A., Zapevalov D.N. Corrosion processes on steel under conditions of moisture condensation and in the presence of carbon dioxide. Chemical and Petroleum Engineering. 2020, vol. 56, no. 7-8, pp. 673-680. http://doi.org/10.1007/s10556-020-00825-5

12. Zapevalov D., Vagapov R. Aspects of protection against carbon dioxide corrosion of gas production facilities. E3S Web of Conferences. 2019, vol. 121, article 02013. https://doi.org/10.1051/e3sconf/201912102013

13. Singer М. Study of the localized nature of top of the line corrosion in sweet environment. CORROSION. 2017, vol. 73, no. 8. pp. 1030-1055. https://doi.org/10.5006/2222

14. Vagapov R. Top-of-line corrosion in the presence of carbon dioxide for gas production facilities. E3S Web of Conferences. 2021, vol. 225, article 01002. https://doi.org/10.1051/e3sconf/202122501002

15. Vagapov R.K., Zapevalov D.N., Ibatullin K.A. Study of corrosion of gas production infrastructure objects at presence of CO2 by the methods of analytical control. Zavodskaya laboratoriya. Diagnostika materialov. 2020, no. 10, pp. 23-30. (In Russ.).

16. Jiang X., Qu D., Song X., Liu X., ZhangY. Critical water content for corrosion of X65 mild steel in gaseous, liquid and supercritical CO2 stream. International Journal of Greenhouse Gas Control. 2019, vol. 85, pp. 11-22. https://doi.org/10.1016/j.ijggc.2019.03.020

17. Sim S., Cole I.S., Bocher F., Corrigan P., Gamage R.P., Ukwattage N., Birbilis N. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines. International Journal of Greenhouse Gas Control. 2013, vol. 17, pp. 534-541. https://doi.org/10.1016/j.ijggc.2013.06.013

18. Kumar S., Foroozesh J., Edlmann K., Rezk M.G., Lim C.Y. A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers. Journal of Natural Gas Science and Engineering. 2020, vol. 81, article 103437. https://doi.org/10.1016/j.jngse.2020.103437

19. Hua Y., Shamsa A., Barker R., Neville A. Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl -, Ca2+ and Mg2+ in high pressure CO2 environments. Applied Surface Science. 2018, vol. 455, pp. 667-682. https://doi.org/10.1016/j.apsusc.2018.05.140

20. Tavares L.M., da Costa E.M., de Oliveira Andrade J.J., Hubler R., Huet B. Effect of calcium carbonate on low carbon steel corrosion behavior in saline CO2 high pressure environments. Applied Surface Science. 2015, vol. 359, pp. 143-152. https://doi.org/10.1016/j.apsusc.2015.10.075

21. Cabrini M., Lorenzi S., Pastore T., Radaelli M. Corrosion rate of high CO2 pressure pipeline steel for carbon capture transport and storage. La Metallurgia Italiana. 2014, vol. 106, no. 6, pp. 21-27.

22. Hua Y., Barker R., Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 . International Journal of Greenhouse Gas Control. 2014, vol. 31, pp. 48-60. http://dx.doi.org/10.1016/j.ijggc.2014.09.026

23. Silva S.C., Silva A.B., Ponciano Gomes J.A.C. Hydrogen embrittlement of API 5L X65 pipeline steel in CO2 containing low H2S concentration environment. Engineering Failure Analysis. 2021, vol. 120, article 105081. https://doi.org/10.1016/j.engfailanal.2020.105081

24. Hua Y., Jonnalagadda R., Zhang L., Neville A., Barker R. Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2 / O2 . International Journal of Greenhouse Gas Control. 2017, vol. 64, pp. 126-136. https://doi.org/10.1016/j.ijggc.2017.07.012

25. Zhang Y., Meng Y., Ju X., Jiang Z., Ma Z. Steel corrosion under supercritical carbon dioxide condition with Impurities. Material Performance. 2019, vol. 58, no. 12, pp. 40-43.

26. Zhang Y., Gao K. Inhibiting steel corrosion in aqueous supercritical CO2 condition. Material Performance. 2011, vol. 50, no. 9, pp. 54-59.

27. Xiang Y., Song C., Li C., Yao E., Yanc W. Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities. Renewable and Sustainable Energy Reviews. 2020, vol. 140, pp. 124-136. https://doi.org/10.1016/j.psep.2020.04.051

28. Cui G., Yang Z., Liu J., Li Z. A comprehensive review of metal corrosion in a supercritical CO2 environment. International Journal of Greenhouse Gas Control. 2019, vol. 90, article 102814. https://doi.org/10.1016/j.ijggc.2019.102814

29. Choi Y.-S., Hassani S., Nam Vu.T., Nesic S., Abas A.Z., Nor A.M., Suhor M.F. Corrosion inhibition of pipeline steels under supercritical CO2 environment. NACE - Corrosion Conference Series. 2017, vol. 4, pp. 2734-2745.

30. Chen L., Obeyesekere N., Wylde J. Lab performance testing on corrosion inhibitors under supercritical carbon dioxide conditions. NACE - Corrosion Conference Series. 2017, vol. 4, pp. 2774-2786.

31. Morks M.F., Corrigan P.A., Cole I.S. Mn-Mg based zinc phosphate and vanadate for corrosion inhibition of steel pipelines transport of CO2 rich fluids. International Journal of Greenhouse Gas Control. 2012, vol. 7, pp. 218-224. https://doi.org/10.1016/j.ijggc.2011.10.005

32. Tanga R., Joshic G.R., Zhaoa H., Venkateswaran S.P., Withersa P.J., Xiao P. The influence of electrodeposited Ni-Co alloy coating microstructure on CO2 corrosion resistance on X65 steel. Corrosion Science. 2020, vol. 167, article 108485. https://doi.org/10.1016/j.corsci.2020.108485


Review

For citations:


Kantyukov R.R., Zapevalov D.N., Vagapov R.K. Media corrosiveness and materials resistance at presence of aggressive carbon dioxide. Izvestiya. Ferrous Metallurgy. 2021;64(11):793-801. https://doi.org/10.17073/0368-0797-2021-11-793-801

Views: 937


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)