Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Thermodynamic analysis of strontium deoxidizing ability in liquid iron at presence of aluminum

https://doi.org/10.17073/0368-0797-2021-10-768-777

Abstract

Phase diagram of the ternary oxide system FeO - SrO -Al2O3 was constructed for the first time. In this system, the following compounds can be formed: hercynite FeAl2O4 and five strontium aluminates - Sr4Al2O7 , Sr3Al2O6 , SrAl2O4 , SrAl4O7 , SrAl12O19 . According to the calculations performed, solid solutions of oxides are not formed in the system, as it is confirmed by the literature data. In the course of modeling, the optimal energy parameters of the theory of subregular ionic solutions were selected for the components of the oxide melt (FeO, SrO, Al2O3 ). Thermodynamic analysis of strontium deoxidizing ability in liquid iron at presence of aluminum was carried out using the technique for constructing the surface of solubility of strontium and aluminum in metal for steelmaking temperatures (1550 and 1600 °C) and carbon concentrations of 0.1 and 0.4 %. The equilibrium constants of the reactions of formation of strontium aluminates Sr3Al2O6 and SrAl2O4 from the components of the metal melt were calculated for the temperature range of 1550 - 1650 °C. It was found that the rest of strontium aluminates can be formed in liquid metal only at temperatures above 1750 °C. The base of thermodynamic data for the studied systems is given: temperature dependences of equilibrium constants for reactions occurring between components; values of interaction parameters of the first order (according to Wagner) for elements in liquid iron; values of energy parameters of the theory of subregular ionic solutions (for oxide melt). It follows from the calculations that the formation of strontium monoaluminate SrAl2O4 and corundum Al2O3 is most probable as the interaction products in Fe -Al - Sr - O and Fe -Al - Sr - C - O systems.

About the Authors

L. A. Makrovets
South Ural State University
Russian Federation

Larisa A. Makrovets - Engineer of the Chair of Materials Science and Physical Chemistry of Materials, South Ural State University.

76 Lenina Ave., Chelyabinsk 454080.



O. V. Samoilova
South Ural State University
Russian Federation

Ol'ga V. Samoilova - Cand. Sci. (Chem.), Senior Researcher, Assist. Prof. of the Chair of Materials Science and Physical Chemistry of Materials, South Ural State University.

76 Lenina Ave., Chelyabinsk 454080.



G. G. Mikhailov
South Ural State University
Russian Federation

Gennadii G. Mikhailov - Dr. Sci. (Eng.), Prof. of the Chair of Materials Science and Physical Chemistry of Materials, South Ural State University.

76 Lenina Ave., Chelyabinsk 454080.



I. V. Bakin
South Ural State University; LLC SPE Technology
Russian Federation

Igor' V. Bakin - Postgraduate of the Chair of Materials Science and Physical Chemistry of Materials, South Ural State University, Head of the Division of Innovation, Modernization and Technical Development, LLC SPE Technology.

76 Lenina Ave., Chelyabinsk 454080; 25 Vodrem Vil. - 40, Chelyabinsk 454901.



References

1. Gokcen N.A., Chipman J. Aluminium-oxygen equilibrium in liquid iron. JOM. 1953, no. 5, pp. 173-178. https://doi.org/10.1007/BF03397469

2. Janke D., Fischer W.A. Desoxidationsgleichgewichte von Titan, Aluminium und Zirconium in Eisenschmelzen bei 1600 °C. Archiv fur das Eisenhuttenwesen. 1976, vol. 47, no. 4, pp. 195-198. (In Germ.). https://doi.org/10.1002/srin.197603805

3. Paek M.K., Jang J.M., Kang Y.B., Pak J.J. Aluminum deoxidation equilibria in liquid iron: Part I. Experimental. Metallurgical Materials Transactions B. 2015, vol. 46, no. 4, pp. 1826-1836. https://doi.org/10.1007/s11663-015-0368-0

4. Skok Yu.Ya. Deoxidizing ability of complex alloys containing alkaline earth metals and rare earth metals. Protsessy lit'ya. 2010, vol. 81, no. 3, pp. 8-12. (In Russ.).

5. Provorova I.B., Rozenberg E.V., Baranovskii K.E., Volosatikov V.I., Rozum V.A., Karas' A.N., Chernyavskii M.S. Modifier for steel out-of-furnace treatment containing alkaline earth metal. Lit'e i metal-lurgiya. 2016, vol. 83, no. 2, pp. 14-18. (In Russ.).

6. Golubtsov V.A., Ryabchikov I.V., Sumin S.I. Non-metallic inclusions modification metal quality. In: Actual Tasks of Physical Metal Science of Steels and Alloys. Materials of the XXIV Ural School of Metal Scientists-Heat-Treaters (March 19 - 23, 2018, Magnitogorsk). Chukin M.V., Emelyushin A N. eds. Magnitogorsk: MSTU im. G.I. Nosova, 2018, pp. 222-229. (In Russ.).

7. Ryabchikov I.V., Panov A.G., Kornienko A.E. Characteristics of modifiers. Steel in Translation. 2007, vol. 37, pp. 516-521. https://doi.org/10.3103/S0967091207060113

8. Bakin I.V., Mikhailov G.G., Golubtsov V.A., Ryabchikov I.V., Dresvyankina L.E. Methods for improving the efficiency of steel modifying. Material Science Forum. 2019, vol. 946, pp. 215-222. https://doi.org/10.4028/www.scientific.net/MSF.946.215

9. Bakin I.V., Shaburova N.A., Ryabchikov I.V., Mizin V.G., Belov B.F., Mikhailov G.G., Senin A.V. Experimental study of refining and modification of steel with Si-Ca, Si-Sr, and Si-Ba alloys. Steel in Translation. 2019, vol. 49, no. 8, pp. 543-547. https://doi.org/10.3103/S0967091219080023

10. Shakhpazov E.Kh., Zaitsev A.I., Shaposhnikov N.G., Rodionova I.G., Rybkin N.A. Physicochemical prediction of the types of nonmetallic inclusions: Complex deoxidation of steel with aluminum and calcium. Russian Metallurgy (Metally). 2006, vol. 2006, no. 2, pp. 99-107. https://doi.org/10.1134/S0036029506020017

11. Faulring G.M., Ramalingam S. Inclusion precipitation diagram for the Fe - O - Ca - Al system. Metallurgical Transactions B. 1980, vol. 11, no. 1, pp. 125-130. https://doi.org/10.1007/BF02657181

12. Taguchi K., Ono-Nakazato H., Usui T., Marukawa K., Katogi K., Kosaka H. Complex deoxidation equilibria of molten iron by aluminum and calcium. ISIJ International. 2005, vol. 45, no. 11, pp. 1572-1576. https://doi.org/10.2355/isijinternational.45.1572

13. Mikhailov G.G., Makrovets L.A., Vydrin D.A. Barium as a deoxidizer and modifier of liquid steel. Vestnik YuUrGU. Seriya “Metallurgiya”. 2013, vol. 13, no. 1, pp. 45-50. (In Russ.).

14. Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. Thermodynamics of Metallurgical Processes and Systems. Moscow: PH MISiS, 2009, 520 p. (In Russ.).

15. Mikhailov G.G., Makrovets L.A., Samoilova O.V., Bakin I.V. Thermodynamic analysis of deoxidizing ability of strontium in liquid iron: Phase stability diagram in Fe - Sr - O and Fe - Mg - Sr - O systems. Chernaya metallurgiya. Bulletin of Scientific, Technical and Economic Information. 2019, vol. 75, no. 12, pp. 1366-1373. (In Russ.). https://doi.org/10.32339/0135-5910-2019-12-1366-1372

16. Fischer W.A., Hoffmann A. Das Zustandsschaubild Eisenoxydul-Al-uminiumoxyd. Archiv fur das Eisenhuttenwesen. 1956, vol. 27, no. 5, pp. 343-346. (In Germ.). https://doi.org/10.1002/srin.195601412

17. Rosenbach K., Schmitz J.A. Untersuchungen im Dreistoffsystem Eisen (II)-oxid-Chrom (III)-oxid-Tonerde. Archiv fur das Eisenhuttenwesen. 1974, vol. 45, no. 12, pp. 843-847. (In Germ.). https://doi.org/10.1002/srin.197403968

18. Slag Atlas. 2nd Edition. Verein Deutscher Eisenhuttenleute (VDEh) ed. Dusseldorf: Verlag Stahleisen GmbH., 1995, pp. 40-43. (In Germ.).

19. Ganits F., Chemеkova T.Yu., Udalov Yu.P. SrO - Al2O3 system. Zhurnal neorganicheskoi khimii. 1979, vol. XXIV, no. 2, pp. 471-475. (In Russ.).

20. Massazza F. Il systema SrO - Al2O3 . La chimica E L'industria (Milan). 1959, vol. XLI, no. 2, pp. 108-115. (In Ital.).

21. Starczewski M. Studia nad reakcjami w fazie stalej w ukladzie trojskladnikowym SrO - Al2O3 - SiO2 . Politech. Slaska, Habil.-Schr. Gliwice, 1964, vol. 106, no. 35, pp. 5-75. (In Pol.).

22. Mikhailov G.G., Samoilova O.V., Makrovets L.A., Smirnov L.A. Thermodynamic modeling of isotherms of oxygen solubility in liquid metal of Fe - Mg - Al - O system. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 8, pp. 639-645. https://doi.org/10.17073/0368-0797-2019-8-639-645

23. Fuwa T., Chipman J. The carbon-oxygen equilibria in liquid iron. Transactions of AIME. 1960, vol. 218, pp. 887-891.

24. Park J.H., Todoroki H. Control of MgO^Al2O3 spinel inclusions in stainless steels. ISIJ International. 2010, vol. 50, no. 10, pp. 1333-1346. https://doi.org/10.2355/isijinternational.50.1333

25. Sigworth G.K., Elliott J.F. The thermodynamics of liquid dilute iron alloys. Metal Science. 1974, vol. 8, no. 1, pp. 298-310. https://doi.org/10.1179/msc.1974.8.1.298

26. Prox H., Hino M., Ban-Ya S. Assessment of Al deoxidation equilibrium in liquid iron. Tetsu-to-Hagane. 1997, vol. 83, no. 12, pp. 773-778. https://doi.org/10.2355/tetsutohagane1955.83.12_773

27. Kulikov I.S. Iron deoxidation with alkaline earth metals. Metally. 1985, no. 6, pp. 9-15. (In Russ.).

28. Ageev Yu.A., Archugov S.A. Alkaline earth metals solubility in liquid iron and iron-based alloys. Zhurnal fizicheskoi khimii. 1985, vol. LIX, no. 4, pp. 838-841. (In Russ.).

29. Stein F., Palm M. Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. International Journal of Materials Research. 2007, vol. 98, no. 7, pp. 580-588. https://doi.org/10.3139/146.101512

30. Yavoiskii V.I. Theory of Steel Production Processes. Moscow: Me-tallurgiya, 1967, 792 p. (In Russ.).


Review

For citations:


Makrovets L.A., Samoilova O.V., Mikhailov G.G., Bakin I.V. Thermodynamic analysis of strontium deoxidizing ability in liquid iron at presence of aluminum. Izvestiya. Ferrous Metallurgy. 2021;64(10):768-777. (In Russ.) https://doi.org/10.17073/0368-0797-2021-10-768-777

Views: 573


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)