Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Structure of AlCoCrFeNi high-entropy alloy after uniaxial compression and heat treatment

https://doi.org/10.17073/0368-0797-2021-10-736-746

Abstract

In this study, we discuss the structure and properties of high-entropy AlCoCrFeNi alloy after casting, cold deformation, and heat treatment. Ingots of the investigated alloys were obtained by arc melting method in argon atmosphere. In order to ensure a homogeneous chemical composition, ingots were remelted several times. Cylindrical samples of 5 mm in diameter and 8 mm in height were cut from ingots by electrospark method for mechanical tests. Subsequently, samples were subjected to uniaxial compression by 5, 11, and 23 %. During the tests, compression curves were recorded, and limit of proportionality of the analyzed alloys was calculated. High-temperature annealing and thermal studies were performed using thermogravimetric analyzer. Thermal studies were carried out in a cyclic mode (3 cycles, including heating up to 1200 °C at a rate of 20 °C/min and cooling at a rate of 20 °C/min). High-temperature annealing was carried out at a temperature of 1200 °C for 5 hours. Such annealing of cast alloys promotes material homogenization and eliminates dendritic structure. The alloy presents limited plasticity. Grain boundaries are effective barriers preventing crack propagation. The studies indicate that plastic deformation has a significant effect on development of relaxation processes during subsequent heat treatment. An increase in strain during the compression leads to a higher rate of healing processes of defects in crystal structure.

About the Authors

I. V. Ivanov
Novosibirsk State Technical University
Russian Federation

Ivan V. Ivanov - Junior Researcher of the Research Laboratory of Physical and Chemical Technologies and Functional Materials, Novosibirsk State Technical University.

20 K. Marksa Ave., Novosibirsk 630073.



K. I. Emurlaev
Novosibirsk State Technical University
Russian Federation

Kemal I. Emurlaev - Junior Researcher of the Research Laboratory of Physical and Chemical Technologies and Functional Materials, Novosibirsk State Technical University.

20 K. Marksa Ave., Novosibirsk 630073.



A. A. Ruktuev
Novosibirsk State Technical University
Russian Federation

Aleksei A. Ruktuev - Cand. Sci (Eng.), Senior Researcher of the Research Laboratory of Physical and Chemical Technologies and Functional Materials, Novosibirsk State Technical University.

20 K. Marksa Ave., Novosibirsk 630073.



A. G. Tyurin
Novosibirsk State Technical University
Russian Federation

Andrei G. Tyurin - Cand. Sci (Eng.), Dean of the Faculty of Mechanics and Technology, Novosibirsk State Technical University.

20 K. Marksa Ave., Novosibirsk 630073.



I. A. Bataev
Novosibirsk State Technical University
Russian Federation

Ivan A. Bataev - Dr. Sci. (Eng.), Head of the Research Laboratory of Physical and Chemical Technologies and Functional Materials, Novosibirsk State Technical University.

20 K. Marksa Ave., Novosibirsk 630073.



References

1. Dai J.H., Li W., Song Y., Vitos L. Theoretical investigation of the phase stability and elastic properties of TiZrHfNb-based high entropy alloys. Materials and Design. 2019, vol. 182, article 108033. https://doi.org/10.1016/j.matdes.2019.108033

2. Zhang Y. High-Entropy Materials. A Brief Introduction. Springer, 2019, 159 p.

3. Feuerbacher M., Heidelmann M., Thomas C. Plastic deformation properties of Zr - Nb - Ti - Ta - Hf high-entropy alloys. Philosophical Magazine. Taylor and Francis. 2015, vol. 95, no. 11, pp. 1222-1233. https://doi.org/10.1080/14786435.2015.1028506

4. Ahmad A.S., Su Y., Liu S.Y., Stahl K., Wu Y.D., Hui X.D., Ru-ett U., Gutowski O, Glazyrin K., Liermann H.P., Franz H., Wang H., Wang D., Cao Q.P., Zhang D.X., Jiang J.Z. Structural stability of high entropy alloys under pressure and temperature. Journal of Applied Physics. 2017, vol. 121, no. 23, article 235901. https://doi.org/10.1063/1.4984796

5. Yu P.F., Zhang L.J., Ning J.L., Ma M.Z., Zhang X.Y., Li Y.C., Liaw P.K., Li G., Liu R.P. Pressure-induced phase transitions in HoDyYGdTb high-entropy alloy. Materials Letters. 2017, vol. 196, pp. 137-140. https://doi.org/10.1016/j.matlet.2017.02.136

6. Dong W., Zhou Z., Zhang M., Ma Y., Yu P., Liaw P.K., Li G. Applications of high-pressure technology for high-entropy alloys: A review. Metals. 2019, vol. 9, no. 8, article 867. https://doi.org/10.3390/met9080867

7. Yusenko K.V., Riva S., Crichton W.A., Spektor K., Bykova E., Pakhomova A., Tudball A., Kupenko I., Rohrbach A., Klemme S., Mazzali F., Margadonna S., Lavery N.P., Brown S.G.R. High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments. Journal of Alloys and Compounds. 2018, vol. 738, pp. 491-500. https://doi.org/10.1016/j.jallcom.2017.12.216

8. Zhang F.X., Zhao S., Jin K., Bei H., Popov D., Park C., Neue-feind J.C., Weber W.J., Zhang Y. Pressure-induced FCC to HCP phase transition in Ni-based high entropy solid solution alloys. Applied Physics Letters. 2017, vol. 110, no. 1, article 011902. https://doi.org/10.1063/1.4973627

9. Chen J., Li L., Weidner D., Vaughan M. Deformation experiments using synchrotron X-rays: In situ stress and strain measurements at high pressure and temperature. Physics of the Earth and Planetary Interiors. 2004, vol. 143-144, pp. 347-356. https://doi.org/10.1016/j.pepi.2003.09.021

10. Ivanov Yu. F., Osintsev K.A., Gromov V.E., Konovalov S.V., Panchenko I.A. Deformation behavior of high-entropy alloy system Al - Co - Cr - Fe - Ni, achieved by wire-arc additive manufacturing. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 1, pp. 68-74. https://doi.org/10.17073/0368-0797-2021-1-68-74

11. Osintsev K.A., Konovalov S.V., Glezer A.M., Gromov V.E., Ivanov Yu.F., Panchenko I.A., Sundeev R.V. Research on the structure of Al2.1Co0.3Cr0.5FeNi2.1 high-entropy alloy at submicro- and nano-scale levels. Materials Letters. 2021, vol. 294, article 129717. https://doi.org/10.1016/j.matlet.2021.129717

12. Wang W.R., Wang W.-L., Wang S.-C., Tsai Y.-C., Lai C.-H., Yeh J.-W. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012, vol. 26, pp. 44-51. https://doi.org/10.1016/j.intermet.2012.03.005

13. Wang W.R., Wang W.L., Yeh J.W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds. 2014, vol. 589, pp. 143-152. https://doi.org/10.1016/j.jallcom.2013.11.084

14. Ma Y., Jiang B., Li C., Wang Q., Dong C., Liaw P.K., Xu F., Sun L. The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys. Metals. 2017, vol. 7, no. 2, article 57. https://doi.org/10.3390/met7020057

15. Feuerbacher M. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy. Scientific Reports. 2016, vol. 6, no. 1, article 29700. https://doi.org/10.1038/srep29700

16. Muralikrishna G.M., Esther A.C.M., Guruvidyathri K., Watermeyer P., Liebscher C., Kulkarni K., Wilde G., Divinski S.V., Murty B.S. Novel multicomponent B2-ordered aluminides: Compositional design, synthesis, characterization and thermal stability. Metals. 2020, vol. 10, no. 11, article 1411. https://doi.org/10.3390/met10111411

17. Nevskii S., Sarychev V., Konovalov S., Granovskii A., Gromov V. Formation mechanism of micro- and nanocrystalline surface layers in titanium and aluminum alloys in electron beam irradiation. Metals. 2020, vol. 10, no. 10, article 1399. https://doi.org/10.3390/met10101399

18. Rohila S., Mane R.B., Naskar S., Panigrahi B.B. Viscous flow assisted sintering of AlCoCrFeNi high entropy alloy powder. Materials Letters. 2019, vol. 256, article 126668. https://doi.org/10.1016/j.matlet.2019.126668

19. Li D.Y., Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics. 2016, vol. 70, pp. 24-28. https://doi.org/10.1016/j.intermet.2015.11.002

20. Tang Z, Gao M.C., Diao H., Yang T., Liu J., Zuo T., Zhang Y., Lu Z., Cheng Y., Zhang Y., Dahmen K.A., Liaw P.K., Egami T. Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM. 2013, vol. 65, no. 12, pp. 1848-1858. https://doi.org/10.1007/s11837-013-0776-z

21. Zhu J.M., Fu H.M., Zhang H.F., Wang A.M., Li H., Hu Z.Q. Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys. Journal of Alloys and Compounds. 2011, vol. 509, no. 8, pp. 3476-3480. https://doi.org/10.1016/j.jallcom.2010.10.047

22. Wang Y.P., Li B.S., Ren M.X., Yang C., Fu H.Z. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A. 2008, vol. 491, no. 1-2, pp. 154-158. https://doi.org/10.1016/j.msea.2008.01.064


Review

For citations:


Ivanov I.V., Emurlaev K.I., Ruktuev A.A., Tyurin A.G., Bataev I.A. Structure of AlCoCrFeNi high-entropy alloy after uniaxial compression and heat treatment. Izvestiya. Ferrous Metallurgy. 2021;64(10):736-746. (In Russ.) https://doi.org/10.17073/0368-0797-2021-10-736-746

Views: 529


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)