Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Influence of titanium and zirconium on structure and heat-resistance of low-carbon iron-aluminium alloys

https://doi.org/10.17073/0368-0797-2021-9-685-692

Abstract

The paper considers the effect of introducing ferroalloys containing titanium and zirconium on the structure and heat-resistance of low-carbon ferroalloys. Theoretically and experimentally, it has been proven that addition of 1.0 mass. % of titanium and 0.1 mass. % of zirconium to a low-carbon iron-aluminum melt containing 12 – 14 mass. % of aluminum, grinds its structure increasing temporary resistance and heat-melting. Titanium and zirconium are strong carbide-forming elements. When introduced into a low-carbon iron-aluminium alloy, they form a large number of crystallization centers, thus affecting its microstructure, allowing to get shredded and more equal grain compared to an alloy without additive. This in turn increases the strength limit of processed alloy. In addition, the use of titanium as a modifying additive in a low-carbon ferroalloy allows increasing its heatresistance, which exceeds several times the heat-resistance of famous chrome-nickel steel of 20Kh23N18 grade. As a result, a new technology for obtaining titanium and zirconium was developed based on research of the effect of their modifying additives on the structure and heat-resistance of low-carbon iron-aluminum alloys. 

About the Authors

O. Yu. Sheshukov
Institute of Metallurgy, Ural Branch of the Russian Academy of Science
Russian Federation

Oleg Yu. Sheshukov, Dr. Sci. (Eng.), Prof., Director of the Institute of New 
Materials and Technologies

101 Amundsena Str., Yekaterinburg 620016



V. V. Kataev
Institute of Metallurgy, Ural Branch of the Russian Academy of Science
Russian Federation

Vladimir V. Kataev, Cand. Sci. (Eng.), Research Associate

101 Amundsena Str., Yekaterinburg 620016



References

1. Chernobrovkin V.P. Raw Security of the Russian Steel Industry. Chelyabinsk: 2011, 81 p. (In Russ.).

2. Myul’ges K. From an atom to a car. Chernye metally. 2015, no. 8, pp. 53–55. (In Russ.).

3. Bikulov R.A., Safronov N.N. Method of obtaining aluminium cast iron with compact graphite inclusions. Patent RF no. 2487950. Byulleten’ izobretenii. 2013, no. 20. (In Russ.).

4. Kataev V.V., Sheshukov O.Y., Ermakova V.P., Smirnova V.G., Marshuk L.A. Method of obtaining aluminium cast iron. Patent RF no 2590772. MPK C21C 1/10. Byulleten’ isobretenii. 2016, no. 19.

5. (In Russ.).

6. Bannykh O.A., Budberg P.B., Alisova S.P. State Diagrams of Double Multicomponent Iron-Based Systems. Moscow: Metallurgiya, 1986, 189 p. (In Russ.).

7. La P.Q., Lu X.F., Yang Y., Wei Y.P., Zhao Y., Cheng C.J. Effect of Mo on microstructure and mechanical properties of bulk nanocrystal line Fe3

8. Al materials prepared by aluminothermy reaction. Materials Science and Technology. 2011, vol. 27, no. 8, pp. 1303–1308. https://doi.org/10.1179/026708310X12738371693094

9. Shankar Rao V., Raja V.S., Baligidad R.G. Effect of carbon on the long-term oxidation behavior of Fe3 Al iron aluminides. Oxidation of Metals. 2002, vol. 57, no. 5–6, pp. 449–470.

10. http://doi.org/10.1023/A:1015348320981

11. Sun Y.F., Lv Y.Z., Zhang Y., Zhao J.Y., Wu Y. Microstructural and properties evolution of austenitic heat resistant steel after addition of aluminium. Materials Science and Technology. 2013, vol. 29, no. 5, pp. 511–516. http://doi.org/10.1179/1743284712Y.0000000177

12. Li C.A., Xiong J., Sun L., Liao Z., Peng M.C. Effect of Si content in hot dipping aluminium bath on Al–Fe bonding layer of aluminium piston with reinforced cast iron ring. Materials Science and Technology. 2012, vol. 28, no. 8, pp. 953–958.

13. http://doi.org/10.1179/1743284712Y.0000000034

14. Schneider A., Sauthoff G. Iron aluminium alloys with strengthening

15. carbides and intermetallic phases for high- temperature applications. Steel Research International. 2004, vol. 75, no. 1, pp. 55–61.https://doi.org/10.1002/srin.200405927

16. Prakash U. Intermetallic matrix composites based on iron aluminides. Intermetallic Matrix Composites. 2018, pp. 21–35.http://dx.doi.org/10.1016/B978-0-85709-346-2.00002-9

17. Prakash U., Buckley R., Jones H., Sellars C. Structure and properties of intermetallics based on the Fe–Al system. ISIJ International. 1991, vol. 31, no. 10, pp. 1113–1126.

18. https://doi.org/10.2355/isijinternational.31.1113

19. Shivkumar K., Baligidad R.G., Sankar M., Satya Prasad V.V. Effect of melting process and aluminium content on the microstructure and mechanical properties of Fe–Al alloys. ISIJ International. 2010,

20. vol.  50, no. 10, pp. 1483–1487.

21. https://doi.org/10.2355/isijinternational.50.1483

22. Sheshukov O.Y., Ermakova V.P., Marshuk L.A., Smirnova V.G., Kataev V.V. Sonnections of the microstructure of the Fe–Al (25–33  %  wt.) with its composition and cooling rate from the liquid state. Advances in Materials Research. 2013, vol. 602–604, pp.  594-597.

23. Sheshukov O.Yu., Ermakova V.P., Smirnova V.G., Kataev V.V., Ovchinnikova L.A., Lapin M.V., Dolmatov A.V. Effect of aluminium content on structure and mechanical properties of Fe–Al-based

24. alloys. In: Environmental Management and Cutting-Edge Materials Technologies. Annual Sci. and Pract. Guide. Yekaterinburg: Ezaprint, 2015, pp. 83–85. (In Russ.).

25. Sheshukov O.Yu., Ermakova V.P., Marshuk L.A., Smirnova V.G., Kataev V.V. On increasing the heat resistance of materials. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. 2012, vol. 14, no. 1–2, pp. 593–596. (In Russ.).

26. Smirnova V.G., Ermakova V.P., Kataev V.V., Marshuk L.A., Nekrasov I.V., Sheshukov O.Yu. How to change the structure of cast Fe–Al alloys by addition of titanium-containing modifiers. In: “FERROSPLAVY”: Prospects of Development of Metallurgy and Engineering using Completed Fundamental Research and Completed Scientific-Research Design Works. Materials of the Sci. and Pract. Conf. with Int. Participation and Elements of the School of Young Scientists. Yekaterinburg: Al’fa Print, 2018, pp. 297–303. (In

27. Russ.).

28. Nekrasov I.V., Smirnova V.G., Ermakova V.P., Mel’chakov S.Yu., Kataev V.V., Marshuk L.A., Sheshukov O.Yu. Effect of modifiers containing Ti and Zr on grain structure of cast Fe – 12 % Al alloys.

29. In: Fundamental and Applied Tasks of Deformable Solid Mechanics

30. and Advanced Technologies in Mechanical Engineering: Materials

31. of the 5th Far-Eastern Conf. with Int. Participation. Komsomolskon-Amur: KnASU, 2018, pp. 140–143. (In Russ.).

32. Kataev V.V. Development of technology for obtaining iron-aluminum alloys: Cand. Tech. Sci. Diss. Yekaterinburg, 2020, 138 p.

33. GOST 1497-84. Metals. Stretching testing methods. Moscow: Gosudarstvennyi komitet standartov soveta ministrov SSSR, 32 p. (In

34. Russ.).

35. GOST 6130-71. Metals. Methods for heat-resistance determining. Moscow: Gosudarstvennyi komitet standartov soveta ministrov SSSR, 13 p. (In Russ.).

36. Construction Materials: Directory. Arzamasov B.N. ed. Moscow: Mashinostroenie, 1990, 688 p. (In Russ.).


Review

For citations:


Sheshukov O.Yu., Kataev V.V. Influence of titanium and zirconium on structure and heat-resistance of low-carbon iron-aluminium alloys. Izvestiya. Ferrous Metallurgy. 2021;64(9):685-692. (In Russ.) https://doi.org/10.17073/0368-0797-2021-9-685-692

Views: 454


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)