Prospects for using boron in metallurgy. Report 2
https://doi.org/10.17073/0368-0797-2021-9-660-668
Abstract
The second part of the article presents perspective directions of using boron and its compounds in the preparation processes, metallurgical processing of ore materials and steel smelting in order to improve the quality of the final product. An efficient technology of silicothermal production of ferrosilicoboron containing 0.6 – 2.0 % B and 60 – 80 % Si has been developed. The advantage of this scheme is the possibility of obtaining a boron-containing alloy during ferrosilicon smelting. It has been experimentally shown that ferrosilicoboron has higher performance characteristics than ferroboron both in production and when used for steel processing. The results of industrial tests of the technology for microalloying pipe grades of steel with a new ferroalloy with boron confirmed a high degree of boron assimilation – up to 96 %. The possibility of widespread use of boron for steel microalloying is due to its cheapness, availability and environmental friendliness. According to the calculations,
boron from complex ferrosilicoboron is the cheapest trace element used to increase the strength characteristics of steel. Additives of B2O3 can be successfully used to form high-magnesium liquid steel-making slags. It is shown that 0.37 – 0.55 % В2О3 effectively stabilizes the highly basic slags of the steel and ferroalloy industries. This operation allows obtaining a marketable lump material. The above review, results of the laboratory and industrial studies have shown the effectiveness of boron usage at different stages of metallurgical production. An increase in technical and
economic indicators of production and quality of steel and ferroalloys, and effective disposal of waste slags is shown. The technical solutions advanced and tested at metallurgical enterprises do not require capital expenditures. They are implemented by adding microdosing of boron and
its compounds to metallurgical production facilities.
About the Authors
V. I. ZhuchkovRussian Federation
Vladimir I. Zhuchkov, Dr. Sci. (Eng.), Prof., Chief Researcher of the Laboratory of Steel and Ferroalloys
101 Amundsena Str., Yekaterinburg 620016
O. V. Zayakin
Russian Federation
Oleg V. Zayakin, Dr. Sci. (Eng.), Chief Researcher, Head of the Laboratory of Steel and Ferroalloys
101 Amundsena Str., Yekaterinburg 620016
А. A. Akberdin
Russian Federation
Aleksandr A. Akberdin, Dr. Sci. (Eng.), Prof., Head of the Laboratory “Boron”
63 Ermekova Str., Karaganda 100009
References
1. Zhuchkov V.I., Akberdin A.A., Vatolin N.A., Leont’ev L.I., Zaya kin O.V., Kim A.S., Konurov U.K. Application of boron-containing materials in metallurgy. Russian Metallurgy (Metally). 2011, vol. 2011, no. 12, pp. 1134–1137. https://doi.org/10.1134/S003602951112024X
2. Zhuchkov V.I., Leont’ev L.I., Akberdin A.A., Babenko A.A., Sy chev A.V. Use of Boron and Its Compounds in Metallurgy. Novosi birsk: Akademizdat, 2018, 156 p. (In Russ).
3. Kim A.S., Zayakin О.V., Akberdin A.A., Kontsevoi Yu.V. Production and application of new complex boron-containing ferroalloys. Rus sian Metallurgy (Metally). 2010, vol. 2010, no. 12, pp. 1148–1150. https://doi.org/10.1134/S0036029510120165
4. Bobkova O.S., Svistunova T.V. Impact of boron on melt properties and structurization of iron and nickel-based steels and alloys. Metal lurgist. 2008, vol. 52, no. 3–4, pp. 175–181. https://doi.org/10.1007/s11015-008-9028-9
5. El-Shennawy М., Farahat A.I., Masoud M.I., Abdel-Aziz A.I. Heat treatment effect on microalloyed low carbon steel with different boron content. International Journal of Mechanical Engineering. 2016, vol. 5, no. 4, pp. 9–20.
6. Adamczyk J., Ozgowicz W., Wusatowski R., Kalinowska-Ozgo wicz E., Grzyb R. Boron–treated microalloyed quenched and tem pered plates, their structure and properties. Journal of Materials Processing Technology. 1997, vol. 64, no. 1–3, pp. 1–8. https://doi.org/10.1016/S0924-0136(96)02548-4
7. Opiela M. The influence of heat treatment on microstructure and crack resistance of boron microalloyed steel plates. Journal of Achievements in Materials and Manufacturing Engineering. 2010, vol. 43, no. 1, pp. 117–124.
8. Hu J., Du L.X., Ma Y.N., Sun G. Sh., Xie H., Misra R.D.K. Effect of microalloying with molybdenum and boron on the microstructure and mechanical properties of ultra-low-C Ti bearing steel. Materials Science and Engineering: A. 2015, vol. 640, pp. 259–266. https://doi.org/10.1016/j.msea.2015.05.087
9. Balachandran G., Menaka K., Ravichandar D. Influence of man ganese and boron alloying and processing conditions on the mi crostructure and the mechanical properties of 0.4 % carbon steels. Transactions of the Indian Institute of Metals. 2019, vol. 72, no. 2, pp. 401– 409. https://doi.org/10.1007/s12666-018-1491-9
10. Opiela M. Effect of boron microaddition on hardenability of new developed HSLA-type steels. Archives of Materials Science and Engineering. 2019, vol. 99, no. 1/2, pp. 13–23.
11. Fujishiro T., Hara T., Terada E., Sakamoto S., Asahi H. Application of B-added low carbon bainite steels to heavy wall X80 UOE line pipe ultralow temperature usage. Proceedings of the 2010 8th Int. Pipeline Conf. 2010, vol. 2, pp. 377–382. https://doi.org/10.1115/IPC2010-31209
12. Boron, Calcium, Niobium and Zirconium in Cast Iron and Steel. Vinarov S.M. ed. STTI of literature on ferrous and non-ferrous me tallurgy, 1961, 459 p. (In Russ.).
13. Naderi M., Ketabchi M., Abbasi M., Bleck W. Analysis of Mi crostructure and mechanical properties of different hot stamped B-bearing steels. Steel Research International. 2010, vol. 81, no. 3, pp. 216–223. https://doi.org/10.1002/srin.200900125
14. Аsahi H. Development of high grade OCTG and linepipe by utiliz ing boron addition. Dzairo to Prosesu CAMP ISIJ. 2009, no. 22, p. 639.
15. Murari F.D., Da Costa E Silva A.L.V., De Avillez R.R. Cold-rolled multiphase boron steels: Microstructure and mechanical properties. Journal of Materials Research and Technology. 2015, vol. 4, no. 2, pp. 191–196. ttps://doi.org/10.1016/j.jmrt.2014.12.001
16. Mejiaa I., Bedolla-Jacuindea A., Maldonadoa C., Cabrera J.M. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron. Materials Science and Engineer ing: A. 2011, vol. 528, no. 13–14, pp. 4468–4474. https://doi.org/10.1016/j.msea.2011.02.040
17. Golubtsov V.A. Theory and Practice of Introducing Additives into Steel outside the Furnace. Chelyabinsk, 2006, 421 p. (In Russ.).
18. Potapov A.I. Research of steel microalloying with boron in order to improve the technology of boron-containing steel production: Ex tended Abstract of Cand. Sci. Diss. Moscow, 2013, 25 p. (In Russ.).
19. Lopez-Chipres E., Mejia L., Maldonado C., Bedolla-Jacuinde A., El-Wahabi M., Cabrera J.M. Hot flow behavior of boron micro alloyed steel. Materials Science and Engineering: A. 2008, vol. 480, no. 1–2, pp. 49–55. https://doi.org/10.1016/j.msea.2007.06.067
20. Stumpf W., Banks K. The hot working characteristics of a boron bearing and a conventional low carbon steel. Materials Science and Engineering: A. 2006, vol. 418, no. 1–2, pp. 86–94. https://doi.org/10.1016/j.msea.2005.11.020
21. Kolbasnikov N.G., Matveev M.A. Effect of boron on high-tem perature plasticity of microalloyed steels. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhniches kogo universiteta. Metallurgiya i materialovedenie. 2016, no. 1, pp. 129–135. (In Russ.).
22. Yessengaliyev D., Baisanov S., Issagulov A., Zayakin O., Abdira shit A. Thermodynamic diagram analysis (TDA) of MnO–CaO– Аl2 O3 -SiO2 and phase composition of slag in refined ferromanga nese production. Metalurgija. 2019, vol. 58, no. 3–4, pp. 291–294.
23. Gasik M.I., Gladkikh V.A., Zhdanov A.V., Zhuchkov V.I., Zaya kin O.V., Leont’ev L.I., Ovcharuk A.N. Calculation of the value of manganese ore raw materials. Russian Metallurgy (Metally). 2009, vol. 2009, no. 8, pp. 756–758.
24. Kelamanov B., Samuratov Y., Akuov A., Abdirashit A., Burum bayev A., Orynbassar R. Research possibility of involvement Ka zakhstani nickel ore in the metallurgical treatment. Metalurgija. 2021, vol. 60, no. 3–4, pp. 313–316.
25. Zayakin O.V., Zhuchkov V.I., Lozovaya E.Yu. Melting time of nick el-bearing ferroalloys in steel. Steel in Translation. 2007, vol. 37, no. 5, pp. 416–418. https://doi.org/10.3103/S0967091207050038
26. Zhuchkov V.I., Zayakin O.V., Leont’ev L.I., Sychev A.V., Kel’ I.N. Physicochemical characteristics, production and application of boron-bearing complex ferroalloys. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 5, pp. 348–352. (In Russ.). https://doi.org/10.17073/0368-0797-2017-5-348-354
27. Sirotin D.V. Efficiency of Improving the Quality of Steel by Microal loying. Preprint. Yekaterinburg: Institute of Economics, UB RAS, 2013, 50 p. (In Russ.).
28. Durinck D., Arnout S., Mertens G., Boydens E., Jones P.T., Elsen J., Blanpain B., Wollants P. Borate distribution in stabilized stainless steel slag. Journal of the American Ceramic Society. 2008, vol. 91, no. 2, pp. 548–554. https://doi.org/10.1111/j.1551-2916.2007.02147.x
29. Zayakin O.V., Statnykh R.N., Zhuchkov V.I. Study of the possibility of obtaining non-decomposing slag during low-carbon ferrochrome production. Metallurgist. 2019, vol. 62, no. 9–10, pp. 875–881. https://doi.org/10.1007/s11015-019-00744-8
30. Pontikes Y., Jones P. T., Geysen D., Blanpain B. Options to pre vent dicalcium silicate–driven disintegration of stainless steel slags. Archives of Metallurgy and Materials. 2010, vol. 55, no. 4, pp. 1169–1172. https://doi.org/10.2478/v10172-010-0020-6
31. Pontikes Y., Kriskova L., Wang X., Geysen D. Additions of indus trial residues for hot stage engineering of stainless steel slags. In: 2nd Int. Slag Valorisation Symposium on April 18-20, 2011, Belgium. 2011, pp. 313–326.
32. Fletcher J.G., Glasser F.P. Phase relations in the system CaO– B2 O3 –SiO2 . Journal of Materials Science. 1993, vol. 28, no. 10, pp. 2677–2686. https://doi.org/10.1007/BF00356203
33. Seci A., Aso Y., Okubo M., Sudo F., Ishizaka K. Development of dusting prevention stabilizer for stainless steel slag. Kavasaki Steel Technical Report. 1986, no. 15, pp. 16–21.
34. Ghose A., Chopra S., Young J.F. Microstructural characterization of doped dicalcium silicate polymorphs. Journal of Materials Science. 1983, vol. 18, no. 10, pp. 2905–2914. https://doi.org/10.1007/BF00700771
35. Chan C.J., Waltraud M., Young J.F. Physical stabilization of the β – γ transformation in dicalcium silicate. Journal of the American Ceramic Society. 1992, vol. 75, no. 6, pp.1621–1627. https://doi.org/10.1111/j.1151-2916.1992.tb04234.x
36. Zayakin O.V., Kel’ I.N. Promising directions for the stabilization of ferroalloy production slags. Materials Science Forum. 2019, vol. 946, pp. 401-405. https://doi.org/10.4028/www.scientific.net/MSF.946.401
Review
For citations:
Zhuchkov V.I., Zayakin O.V., Akberdin А.A. Prospects for using boron in metallurgy. Report 2. Izvestiya. Ferrous Metallurgy. 2021;64(9):660-668. (In Russ.) https://doi.org/10.17073/0368-0797-2021-9-660-668