Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Generation of increased mechanical properties of Cantor high­entropy alloy

https://doi.org/10.17073/0368-0797-2021-8-599-605

Abstract

The article considers a brief review of the last years of Russian and foreign research on the possibilities of improving mechanical properties of the Cantor quinary high­entropy alloy (HEA) with different phase composition in wide temperature range. The alloy, one of the frst created equimolar HEAs with FCC structure, needs mechanical properties improvement in accordance with possible felds of application in spite of its high impact toughness and increased creep resistance. It has been noted that bimodal distribution of the grains by sizes under severe plastic torsional strain at high pressure of 7.8 GPa of cast alloy and subsequent short­time annealing at 873 and 973 K can change strength and plastic properties. Nanodimensional scale of the grains surrounded by amorphous envelope has been obtained for HEA produced by the method of magnetron sputtering and subsequent annealing at 573 K. In such a two­phase alloy nanohardness amounted to 9.44 GPa and elasticity modulus – to 183 GPa. Using plasticity effect induced by phase transformation in (CrMnFeCoNi)50Fe50 alloy obtained by the method of laser additive technology the ultimate strength of 415 – 470 MPa has been reached at high level of plasticity up to 77 %. It has been ensured by FCC → BCC diffusionless transformation. It is shown that difference in mechanisms of plastic strain of cast alloy at 77 K and 293 K (dislocation glide and twinning) determines a combination of increased “strength­plasticity” properties. Samples for generation of twins prestrained at 77 K exhibit increased strength and plasticity under subsequent loading at 293 K in comparison with the unstrained ones. For HEA obtained by laser additive technology this way of increasing properties is also true. The way of improving mechanical properties at the expense of electron beam processing is noted. The attention is paid to the necessity of taking into account the role of entropy, crystal lattice distortions, short­range order, weak diffusion and “cocktail” effect in the analysis of mechanical properties.

About the Authors

V. E. Gromov
Siberian State Industrial University
Russian Federation

  Viktor E. Gromov, Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel’

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007 



Yu. A. Rubannikova
Siberian State Industrial University
Russian Federation

  Yuliya A. Rubannikova, Postgraduate of the Chair of Science named after V.M. Finkel’

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007 

 



S. V. Konovalov
Siberian State Industrial University; Samara National Research University
Russian Federation

  Sergei V. Konovalov, Dr. Sci. (Eng.), Head of the Chair of Metals Technology and Aviation Materials, Prof.

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007 

 34 Moskovskoe Route, Samara 443086



K. A. Osintsev 
Siberian State Industrial University; Samara National Research University
Russian Federation

  Kirill A. Osintsev, Postgraduate of the Chair of Metals Technology and Aviation Materials

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007 

 34 Moskovskoe Route, Samara 443086 



S. V. Vorob’ev
Siberian State Industrial University
Russian Federation

  Sergei V. Vorob’ev, Dr. Sci. (Eng.), Senior Researcher of Department of Scientific Researches

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007 



References

1. Yeh J.W. Alloy design strategies and future trends in high­entropy alloys. JOM. The Journal of the minerals, metals and materials society. 2013, vol. 65, no. 12, pp. 1759–1771. https://doi.org/10.1007/s11837-013-0761-6

2. Yeh J.W. Recent progress in high­entropy alloys. Annales de Chimie: Science des Materiaux. 2006, vol. 31, no. 6, pp. 633–648. https://doi.org/10.3166/acsm.31.633-648

3. Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High­entropy alloys: Structure, mechanical properties, deformation mechanisms and application. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 4, pp. 249–258. (In Russ.). https://doi.org/10.17073/0368-0797-2021-4-249-258

4. Gromov V.E., Konovalov S.V., Ivanov Yu.F., Osintsev K.A., Rubannikova Yu.A., Peregudov O.A., Semin A.P. High Entropy Alloys. Novokuznetsk: Poligrafst, 2021, 178 p. (In Russ.).

5. Li Z., Zhao S., Ritchie R.O., Meyers M.A. Mechanical properties of high­entropy alloys with emphasis on face­centered cubic alloys. Progress in Materials Science. 2019, vol. 102, pp. 296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003

6. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 2004, vol. 375­77, pp. 213–218. https://doi.org/10.1016/j.msea.2003.10.257

7. Otto F., Dlouhý A., Somsen Ch., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high­entropy alloy. Acta Materialia. 2013, vol. 61, no. 15, pp. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018

8. Schuh B., Mendez­Martin F., Völker B., George E.P., Clemens H., Pippan R., Hohenwarter A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high­entropy alloy after severe plastic deformation. Acta Materialia. 2015, vol. 96, pp. 258–268. https://doi.org/10.1016/j.actamat.2015.06.025

9. Li Z., Tasan C.C., Springer H., Gault B., Raabe D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high­entropy alloys. Scientifc Reports. 2017, vol. 7, article 40704. https://doi.org/10.1038/srep40704

10. Xiao L.L., Zheng Z.Q., Guo S.W., Huang P., Wang F. Ultra­strong nanostructured CrMnFeCoNi high entropy alloys. Materials and Design. 2020, vol. 194, article 108895. https://doi.org/10.1016/j.matdes.2020.108895

11. Coury F.G., Kaufman M., Clarke A.J. Solid­solution strengthening in refractory high entropy alloys. Acta Materialia. 2019, vol. 175, pp. 66–81. https://doi.org/10.1016/j.actamat.2019.06.006

12. Ikeda Y., Tanaka I., Neugebauer J., Körmann F. Impact of interstitial C on phase stability and stacking­fault energy of the CrMnFeCoNi high­entropy alloy. Physical Review Materials. 2019, vol. 3, no. 11, article 113603. https://doi.org/10.1103/PhysRevMaterials.3.113603

13. Laplanche G., Kostka A., Horst O.M., Eggeler G., George E.P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high­entropy alloy. Acta Materialia. 2016, vol. 118, pp. 152–163. https://doi.org/10.1016/j.actamat.2016.07.038

14. Li F., Zhao H., Yue Y., Yang Z., Zhang Y., Guo L. Dual­phase super­strong and elastic ceramic. ACS Nano. 2019, vol. 13, no. 4, pp. 4191–4198. https://doi.org/10.1021/acsnano.8b09195

15. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture­resistant high­entropy alloy for cryogenic applications. Science. 2014, vol. 345, no. 6201, pp. 1153. https://doi.org/10.1126/science.1254581

16. Li Z., Körmann F., Grabowski B., Neugebauer J., Raabe D. Ab initio assisted design of quinary dual­phase high­entropy alloys with transformation­induced plasticity. Acta Materialia. 2017, vol. 136, pp. 262–270. https://doi.org/10.1016/j.actamat.2017.07.023

17. Schuh B., Völker B., Todt J., Kormout K.S., Hohenwarter A., Schell N. Influence of annealing on microstructure and mechanical properties of a nanocrystalline CrCoNi medium­entropy alloy. Materials. 2018, vol. 11, no. 5, article 662. https://doi.org/10.3390/ma11050662

18. Gromov V.E., Ivanov Yu.F., Vorob’ev S.V., Gorbunov S.V., Bessonov D.A., Sizov V.V., Konovalov S.V. Fatigue of Steels Modifed with High­Intensity Electron Beams. Novokuznetsk: Inter­Kuzbass, 2012, 403 p. (In Russ.).

19. Konovalov S.V., Gromov V.E., Ivanov Yu.F. Influence of Electromagnetic Fields and Currents on Plastic Deformation of Metals and Alloys. Novokuznetsk: Inter­Kuzbass, 2013, 293 p. (In Russ.).

20. Gromov V.E., Aksenova K.V., Konovalov S.V., Ivanov Yu.F. Increasing the fatigue life of silumin by electron beam treatment. Uspekhi fziki metallov. 2015, vol. 16, no. 4, pp. 265–297. (In Russ.).

21. Gromov V.E., Ivanov Yu.F., Glezer A.M., Konovalov S.V., Alsaraeva K.V. Structural evolution of silumin treated with a high­intensity pulse electron beam and subsequent fatigue loading up to failure. Bulletin of the Russian Academy of Sciences. Physics. 2015, vol. 79, no 9, pp. 1169–1172. https://doi.org/10.3103/S1062873815090087

22. Ranganathan S. Alloyed pleasures: Multimetallic cocktails. Current Science. 2003, vol. 85, pp. 1404–1406.

23. Schuh B., Pippan R., Hohenwarter A. Tailoring bimodal grain size structures in nanocrystalline compositionally complex alloys to improve ductility. Materials Science and Engineering: A. 2019, vol. 748, pp. 379–385. https://doi.org/10.1016/j.msea.2019.01.073

24. Tian Y.Z., Gao S., Zhao L.J., Lu S., Pippan R., Zhang Z.F., Tsuji N. Remarkable transitions of yield behavior and Lüders deformation in pure Cu by changing grain sizes. Scripta Materialia. 2018, vol. 142, pp. 88–91. https://doi.org/10.1016/j.scriptamat.2017.08.034

25. Abhijit A., Varghese J., Chalavadi P., Sai Karthik P., Bhanu Sankara Rao K., Rajulapati K.V. Negative strain rate sensitivity in two­phase nanocrystalline CoCrFeMnNi high­entropy alloy with broader grain size distribution studied by nanoindentation. Transactions of the Indian Institute of Metals. 2019, vol. 72, no. 10, pp. 2861–2867. https://doi.org/10.1007/s12666-019-01762-5

26. Li Z., Gokuldoss Pradeep K., Deng Y., Raabe D., Tasan C.C. Metastable high­entropy dual­phase alloys overcome the strength­ductility trade­off. Nature. 2016, vol. 534, pp. 227–230. https://doi.org/10.1038/nature17981

27. Bae J.W., Seol J.B., Moon J., Sohn S.S., Jang M.J., Um H.Y., Lee B.­J., Kim H.S. Exceptional phase­transformation strengthening of ferrous medium­entropy alloys at cryogenic temperatures. Acta Materialia. 2018, vol. 161, pp. 388–399. https://doi.org/10.1016/j.actamat.2018.09.057

28. Li J., Luan H., Zhou L., Amar A., Li R., Huang L., Liu X., Le G., Wang X., Wu J., Jiang C. Phase transformation – induced strengthening of an additively manufactured multi­principal element CrMnFeCoNi alloy. Materials and Design. 2020, vol. 195, article 108999. https://doi.org/10.1016/j.matdes.2020.108999

29. Huang H., Wu Y., He J., Wang H., Liu X., An K., Wu W., Lu Z. Phase­transformation ductilization of brittle high­entropy alloys via metastability engineering. Advanced Materials. 2017, vol. 29, no. 30, article 1701678. https://doi.org/10.1002/adma.201701678

30. Laplanche G., Kostka A., Horst O.M., Eggeler G., George E.P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high­entropy alloy. Acta Materialia. 2016, vol. 118, pp. 152–163. http://dx.doi.org/10.1016/j.actamat.2016.07.038

31. Qiu Z., Yao C., Feng K., Li Z., Chu P.K. Cryogenic deformation mechanism of CrMnFeCoNi high­entropy alloy fabricated by laser additive manufacturing process. International Journal of Lightweight Materials and Manufacture. 2018, vol. 1, no. 1, pp. 33–39. https://doi.org/10.1016/j.ijlmm.2018.02.001

32. Otto F., Dlouhý A., Somsen C., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high­entropy alloy. Acta Materialia. 2013, vol. 61, no. 15, pp. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018

33. Osintsev K.А., Gromov V.E., Konovalov S.V., Ivanov Yu. F., Panchenko I.А., Chen’ S. Effect of pulsed electron beam irradiation on the surface structure of a non­equiatomic high­entropy alloy of the Al–Co–Cr–Fe–Ni. System Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2021, no. 8, pp. 76–81. (In Russ.). https://doi.org/10.31857/S1028096021080112


Review

For citations:


Gromov V.E., Rubannikova Yu.A., Konovalov S.V., Osintsev  K.A., Vorob’ev S.V. Generation of increased mechanical properties of Cantor high­entropy alloy. Izvestiya. Ferrous Metallurgy. 2021;64(8):599-605. (In Russ.) https://doi.org/10.17073/0368-0797-2021-8-599-605

Views: 837


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)