Generation of increased mechanical properties of Cantor highentropy alloy
https://doi.org/10.17073/0368-0797-2021-8-599-605
Abstract
The article considers a brief review of the last years of Russian and foreign research on the possibilities of improving mechanical properties of the Cantor quinary highentropy alloy (HEA) with different phase composition in wide temperature range. The alloy, one of the frst created equimolar HEAs with FCC structure, needs mechanical properties improvement in accordance with possible felds of application in spite of its high impact toughness and increased creep resistance. It has been noted that bimodal distribution of the grains by sizes under severe plastic torsional strain at high pressure of 7.8 GPa of cast alloy and subsequent shorttime annealing at 873 and 973 K can change strength and plastic properties. Nanodimensional scale of the grains surrounded by amorphous envelope has been obtained for HEA produced by the method of magnetron sputtering and subsequent annealing at 573 K. In such a twophase alloy nanohardness amounted to 9.44 GPa and elasticity modulus – to 183 GPa. Using plasticity effect induced by phase transformation in (CrMnFeCoNi)50Fe50 alloy obtained by the method of laser additive technology the ultimate strength of 415 – 470 MPa has been reached at high level of plasticity up to 77 %. It has been ensured by FCC → BCC diffusionless transformation. It is shown that difference in mechanisms of plastic strain of cast alloy at 77 K and 293 K (dislocation glide and twinning) determines a combination of increased “strengthplasticity” properties. Samples for generation of twins prestrained at 77 K exhibit increased strength and plasticity under subsequent loading at 293 K in comparison with the unstrained ones. For HEA obtained by laser additive technology this way of increasing properties is also true. The way of improving mechanical properties at the expense of electron beam processing is noted. The attention is paid to the necessity of taking into account the role of entropy, crystal lattice distortions, shortrange order, weak diffusion and “cocktail” effect in the analysis of mechanical properties.
Keywords
About the Authors
V. E. GromovRussian Federation
Viktor E. Gromov, Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel’
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007
Yu. A. Rubannikova
Russian Federation
Yuliya A. Rubannikova, Postgraduate of the Chair of Science named after V.M. Finkel’
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007
S. V. Konovalov
Russian Federation
Sergei V. Konovalov, Dr. Sci. (Eng.), Head of the Chair of Metals Technology and Aviation Materials, Prof.
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007
34 Moskovskoe Route, Samara 443086
K. A. Osintsev
Russian Federation
Kirill A. Osintsev, Postgraduate of the Chair of Metals Technology and Aviation Materials
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007
34 Moskovskoe Route, Samara 443086
S. V. Vorob’ev
Russian Federation
Sergei V. Vorob’ev, Dr. Sci. (Eng.), Senior Researcher of Department of Scientific Researches
42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007
References
1. Yeh J.W. Alloy design strategies and future trends in highentropy alloys. JOM. The Journal of the minerals, metals and materials society. 2013, vol. 65, no. 12, pp. 1759–1771. https://doi.org/10.1007/s11837-013-0761-6
2. Yeh J.W. Recent progress in highentropy alloys. Annales de Chimie: Science des Materiaux. 2006, vol. 31, no. 6, pp. 633–648. https://doi.org/10.3166/acsm.31.633-648
3. Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. Highentropy alloys: Structure, mechanical properties, deformation mechanisms and application. Izvestiya. Ferrous Metallurgy. 2021, vol. 64, no. 4, pp. 249–258. (In Russ.). https://doi.org/10.17073/0368-0797-2021-4-249-258
4. Gromov V.E., Konovalov S.V., Ivanov Yu.F., Osintsev K.A., Rubannikova Yu.A., Peregudov O.A., Semin A.P. High Entropy Alloys. Novokuznetsk: Poligrafst, 2021, 178 p. (In Russ.).
5. Li Z., Zhao S., Ritchie R.O., Meyers M.A. Mechanical properties of highentropy alloys with emphasis on facecentered cubic alloys. Progress in Materials Science. 2019, vol. 102, pp. 296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003
6. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 2004, vol. 37577, pp. 213–218. https://doi.org/10.1016/j.msea.2003.10.257
7. Otto F., Dlouhý A., Somsen Ch., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi highentropy alloy. Acta Materialia. 2013, vol. 61, no. 15, pp. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018
8. Schuh B., MendezMartin F., Völker B., George E.P., Clemens H., Pippan R., Hohenwarter A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi highentropy alloy after severe plastic deformation. Acta Materialia. 2015, vol. 96, pp. 258–268. https://doi.org/10.1016/j.actamat.2015.06.025
9. Li Z., Tasan C.C., Springer H., Gault B., Raabe D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile highentropy alloys. Scientifc Reports. 2017, vol. 7, article 40704. https://doi.org/10.1038/srep40704
10. Xiao L.L., Zheng Z.Q., Guo S.W., Huang P., Wang F. Ultrastrong nanostructured CrMnFeCoNi high entropy alloys. Materials and Design. 2020, vol. 194, article 108895. https://doi.org/10.1016/j.matdes.2020.108895
11. Coury F.G., Kaufman M., Clarke A.J. Solidsolution strengthening in refractory high entropy alloys. Acta Materialia. 2019, vol. 175, pp. 66–81. https://doi.org/10.1016/j.actamat.2019.06.006
12. Ikeda Y., Tanaka I., Neugebauer J., Körmann F. Impact of interstitial C on phase stability and stackingfault energy of the CrMnFeCoNi highentropy alloy. Physical Review Materials. 2019, vol. 3, no. 11, article 113603. https://doi.org/10.1103/PhysRevMaterials.3.113603
13. Laplanche G., Kostka A., Horst O.M., Eggeler G., George E.P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi highentropy alloy. Acta Materialia. 2016, vol. 118, pp. 152–163. https://doi.org/10.1016/j.actamat.2016.07.038
14. Li F., Zhao H., Yue Y., Yang Z., Zhang Y., Guo L. Dualphase superstrong and elastic ceramic. ACS Nano. 2019, vol. 13, no. 4, pp. 4191–4198. https://doi.org/10.1021/acsnano.8b09195
15. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fractureresistant highentropy alloy for cryogenic applications. Science. 2014, vol. 345, no. 6201, pp. 1153. https://doi.org/10.1126/science.1254581
16. Li Z., Körmann F., Grabowski B., Neugebauer J., Raabe D. Ab initio assisted design of quinary dualphase highentropy alloys with transformationinduced plasticity. Acta Materialia. 2017, vol. 136, pp. 262–270. https://doi.org/10.1016/j.actamat.2017.07.023
17. Schuh B., Völker B., Todt J., Kormout K.S., Hohenwarter A., Schell N. Influence of annealing on microstructure and mechanical properties of a nanocrystalline CrCoNi mediumentropy alloy. Materials. 2018, vol. 11, no. 5, article 662. https://doi.org/10.3390/ma11050662
18. Gromov V.E., Ivanov Yu.F., Vorob’ev S.V., Gorbunov S.V., Bessonov D.A., Sizov V.V., Konovalov S.V. Fatigue of Steels Modifed with HighIntensity Electron Beams. Novokuznetsk: InterKuzbass, 2012, 403 p. (In Russ.).
19. Konovalov S.V., Gromov V.E., Ivanov Yu.F. Influence of Electromagnetic Fields and Currents on Plastic Deformation of Metals and Alloys. Novokuznetsk: InterKuzbass, 2013, 293 p. (In Russ.).
20. Gromov V.E., Aksenova K.V., Konovalov S.V., Ivanov Yu.F. Increasing the fatigue life of silumin by electron beam treatment. Uspekhi fziki metallov. 2015, vol. 16, no. 4, pp. 265–297. (In Russ.).
21. Gromov V.E., Ivanov Yu.F., Glezer A.M., Konovalov S.V., Alsaraeva K.V. Structural evolution of silumin treated with a highintensity pulse electron beam and subsequent fatigue loading up to failure. Bulletin of the Russian Academy of Sciences. Physics. 2015, vol. 79, no 9, pp. 1169–1172. https://doi.org/10.3103/S1062873815090087
22. Ranganathan S. Alloyed pleasures: Multimetallic cocktails. Current Science. 2003, vol. 85, pp. 1404–1406.
23. Schuh B., Pippan R., Hohenwarter A. Tailoring bimodal grain size structures in nanocrystalline compositionally complex alloys to improve ductility. Materials Science and Engineering: A. 2019, vol. 748, pp. 379–385. https://doi.org/10.1016/j.msea.2019.01.073
24. Tian Y.Z., Gao S., Zhao L.J., Lu S., Pippan R., Zhang Z.F., Tsuji N. Remarkable transitions of yield behavior and Lüders deformation in pure Cu by changing grain sizes. Scripta Materialia. 2018, vol. 142, pp. 88–91. https://doi.org/10.1016/j.scriptamat.2017.08.034
25. Abhijit A., Varghese J., Chalavadi P., Sai Karthik P., Bhanu Sankara Rao K., Rajulapati K.V. Negative strain rate sensitivity in twophase nanocrystalline CoCrFeMnNi highentropy alloy with broader grain size distribution studied by nanoindentation. Transactions of the Indian Institute of Metals. 2019, vol. 72, no. 10, pp. 2861–2867. https://doi.org/10.1007/s12666-019-01762-5
26. Li Z., Gokuldoss Pradeep K., Deng Y., Raabe D., Tasan C.C. Metastable highentropy dualphase alloys overcome the strengthductility tradeoff. Nature. 2016, vol. 534, pp. 227–230. https://doi.org/10.1038/nature17981
27. Bae J.W., Seol J.B., Moon J., Sohn S.S., Jang M.J., Um H.Y., Lee B.J., Kim H.S. Exceptional phasetransformation strengthening of ferrous mediumentropy alloys at cryogenic temperatures. Acta Materialia. 2018, vol. 161, pp. 388–399. https://doi.org/10.1016/j.actamat.2018.09.057
28. Li J., Luan H., Zhou L., Amar A., Li R., Huang L., Liu X., Le G., Wang X., Wu J., Jiang C. Phase transformation – induced strengthening of an additively manufactured multiprincipal element CrMnFeCoNi alloy. Materials and Design. 2020, vol. 195, article 108999. https://doi.org/10.1016/j.matdes.2020.108999
29. Huang H., Wu Y., He J., Wang H., Liu X., An K., Wu W., Lu Z. Phasetransformation ductilization of brittle highentropy alloys via metastability engineering. Advanced Materials. 2017, vol. 29, no. 30, article 1701678. https://doi.org/10.1002/adma.201701678
30. Laplanche G., Kostka A., Horst O.M., Eggeler G., George E.P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi highentropy alloy. Acta Materialia. 2016, vol. 118, pp. 152–163. http://dx.doi.org/10.1016/j.actamat.2016.07.038
31. Qiu Z., Yao C., Feng K., Li Z., Chu P.K. Cryogenic deformation mechanism of CrMnFeCoNi highentropy alloy fabricated by laser additive manufacturing process. International Journal of Lightweight Materials and Manufacture. 2018, vol. 1, no. 1, pp. 33–39. https://doi.org/10.1016/j.ijlmm.2018.02.001
32. Otto F., Dlouhý A., Somsen C., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi highentropy alloy. Acta Materialia. 2013, vol. 61, no. 15, pp. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018
33. Osintsev K.А., Gromov V.E., Konovalov S.V., Ivanov Yu. F., Panchenko I.А., Chen’ S. Effect of pulsed electron beam irradiation on the surface structure of a nonequiatomic highentropy alloy of the Al–Co–Cr–Fe–Ni. System Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2021, no. 8, pp. 76–81. (In Russ.). https://doi.org/10.31857/S1028096021080112
Review
For citations:
Gromov V.E., Rubannikova Yu.A., Konovalov S.V., Osintsev K.A., Vorob’ev S.V. Generation of increased mechanical properties of Cantor highentropy alloy. Izvestiya. Ferrous Metallurgy. 2021;64(8):599-605. (In Russ.) https://doi.org/10.17073/0368-0797-2021-8-599-605