Digital transformation of pyrometallurgical technologies: State, scientifc problems and prospects of development
https://doi.org/10.17073/0368-0797-2021-8-588-598
Abstract
The article considers an overview and critical analysis of the digitalization of the leading Russian ferrous metallurgy enterprises in accordance with the Industry 4.0 development concept. It provides for the creation of digital twins of pyrometallurgical technologies, the widespread use of machine vision and artifcial intelligence. The examples of domestic industrial systems using the technologies of machine (technical) vision in production cycle, digital assistants (twins) of metallurgical units and their sets are presented. With regard to blastfurnace production, technical vision systems used to control processes in the upper and lower zones of blast furnace are considered. A promising area is the integration of technical vision and decision support systems, including algorithms and software modules for implementation of deterministic mathematical models of individual phenomena of blast furnace smelting. They are based on fundamental physical concepts of blastfurnace smelting processes. One of the main directions of digital transformation of pyrometallurgical technologies is creation of intelligent control systems for technological process in metallurgy in real time. When formulating and solving problems, it is required not only to study the characteristics describing the effect of change in melting conditions on technical and economic indicators of the operation of individual furnaces, but also a detailed analysis for mathematical description of external and internal constraints. The authors present the examples of subsystems for control of heat losses in a blast furnace, predicting the parameters of tuyere hearths and controlling distribution of blast parameters around the perimeter of a blast furnace, an automated system for analyzing and predicting production situations in a blast furnace. Creation of such systems was carried out on the basis of modern principles and technologies for the development of appropriate mathematical, algorithmic and software support.
About the Authors
N. A. SpirinRussian Federation
Nikolai A. Spirin, Dr. Sci. (Eng.), Prof., Head of the Chair “Thermal Physics and Informatics in Metallurgy”
28 Mira Str., Yekaterinburg 620002
V. V. Lavrov
Russian Federation
Vladislav V. Lavrov, Dr. Sci. (Eng.), Prof. of the Chair “Thermal Physics and Informatics in Metallurgy”
28 Mira Str., Yekaterinburg 620002
V. Yu. Rybolovlev
Russian Federation
Valerii Yu. Rybolovlev, Cand. Sci. (Eng.), Chief of the Design Office
93 Kirova Str., Magnitogorsk, Chelyabinsk Region 455000
D. A. Shnaider
Russian Federation
Dmitrii A. Schneider, Dr. Sci. (Eng.), Head of the Center of Mathematical Modeling and System Analytical Research
93 Kirova Str., Magnitogorsk, Chelyabinsk Region 455000
A. V. Krasnobaev
Russian Federation
Alexei V. Krasnobaev, Cand. Sci. (Eng.), Manager of the Design Office
93 Kirova Str., Magnitogorsk, Chelyabinsk Region 455000
I. A. Gurin
Russian Federation
Ivan A. Gurin, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Thermal Physics and Informatics in Metallurgy”
28 Mira Str., Yekaterinburg 620002
References
1. Digital Twin. Gartner Glossary. [Electronic resource]. Available at URL: https://www.gartner.com/en/informationtechnology/glossary/digitaltwin (Accessed 05.08.2021).
2. Digital tween. Digital Twin of Organization, DTO. TADVISER. State. Business. [Electronic resource]. Available at URL: http://www.tadviser.ru/index.php/Статья:Цифровой_двойник_(Digital_Twin) (Accessed 05.08.2021).
3. Tsymbal V.P. Mathematical Modeling of Complex Systems in Metallurgy. Kemerovo; Moscow: Rossiiskie universitety; Kuzbassvuzizdat–ASTSh, 2006, 431 p. (In Russ.).
4. Dmitriev A.N., Zolotykh M.O., Vit’kina G.Yu. Improvement of sintering and blastfurnace production using digital technologies within the framework of Industry 4.0. Chernaya metallurgiya. Bulletin of Scientifc, Technical and Economic Information. 2020, vol. 6, no. 4, pp. 339–345. (In Russ.). https://doi.org/10.32339/0135-5910-2020-4-339-343
5. Stockman G., Shapiro L.G. Computer Vision. Prentice Hall PTR. Upper Saddle River, United States, 2001, 608 p.
6. Machine (technical) vision. Metallurgy. Mallenom Systems. [Electronic resource]. Available at URL: https://www.mallenom.ru/resheniya/mashinnoezrenie/pootroslyam/metallurgiia (Accessed 05.08.2021). (In Russ.).
7. Severstal is mastering manufacture of video inspection systems for rolled surfaces. Metal Supply and Sales. [Electronic resource]. Available at URL: https://www.metalinfo.ru/ru/news/118725 (Accessed 05.08.2021). (In Russ.).
8. Control of position of hotrolled coils on a conveyor. Mallenom Systems. [Electronic resource]. Available at URL: https://www.mallenom.ru/vnedrenia/pmz/metallurgy2 (Accessed 05.08.2021). (In Russ.).
9. The ChelPipe Group has introduced a new technology for testing pipes based on machine vision. Press Center of the ChelPipe Group. [Electronic resource]. Available at URL: https://chelpipe.ru/presscenter/gruppachtpzvnedrilanovuyutekhnologiyuispytaniyatrubnaosnovemashinnogozreniya/ (Accessed 05.08.2021). (In Russ.).
10. Forum “Information Technologies in Metallurgy and Metalworking”. “ITMETALL” Forum. [Electronic resource]. Available at URL: https://итметалл.рф/ (Accessed 10.01.2021). (In Russ.).
11. TV-MMK. Leader of digitalization. Air: 17122020: YouTube Video hosting. [Electronic resource]. Available at URL: https://www.youtube.com/watch?v=7opclYs93dA (Accessed 05.08.2021). (In Russ.).
12. Pan D., Jiang Z., Chen Z., Gui W., Xie Y., Yang C. Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model. Sensors. 2018, vol. 18, no. 11, article 3792. https://doi.org/10.3390/s18113792
13. Usamentiaga R., Molleda J., Garcia D., Granda J.C., Rendueles J.L. Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision. IEEE Transactions on Instrumentation and Measurement. 2012, vol. 61, no. 5, pp. 1149–1159. https://doi.org/10.1109/TIM.2011.2178675
14. Shi L., Wen Y.B., Zhao G.S., Yu T. Recognition of blast furnace gas flow center distribution based on infrared image processing. Journal of Iron and Steel Research International. 2016, vol. 23, no. 3, pp. 203–209. https://doi.org/10.1016/S1006-706X(16)30035-8
15. Zhu Q., Lü C.L., Yin Y.X., Chen X.Z. Burden distribution calculation of bellless top of blast furnace based on multiradar data. Journal of Iron and Steel Research International. 2013, vol. 20, no. 6, pp. 33–37. https://doi.org/10.1016/S1006-706X(13)60108-9
16. Spirin N.A., Ovchinnikov Yu.N., Shvydkii V.S., Yaroshenko Yu.G. Heat Transfer and Improving the Efciency of BlastFurnace Smelting. Yekaterinburg: izd. Ural’skogo gosudarstvennogo tekhnicheskogo universiteta, 1995, 243 p. (In Russ.).
17. Ishmetyev E.N., Salikhov Z.G., Shchetinin A.P., Budadin Z.G. Automatic diagnostics of the operational state of pyrometallurgical unit hazardous zones. Izvestiya. Ferrous metallurgy. 2010, no. 1, pp. 58–61.
18. Spirin N.A., Shvydkii V.S., Ovchinnikov Yu.N., Lavrov V.V., Gusev A.A. Mathematical modeling of heat transfer in blast furnace raceway. Steel in Translation. 1998, vol. 28, no. 4, pp. 5–8.
19. Abhale P.B., Viswanathan N.N., Saxen H. Numerical modelling of blast furnace – Evolution and recent trends. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy. 2020, vol. 129, no. 2, pp. 166–83. https://doi.org/10.1080/25726641.2020.1733357
20. Bambauer F., Wirtz S., Scherer V., Bartusch H. Transient DEMCFD simulation of solid and fluid flow in a three dimensional blast furnace model. Powder Technology. 2018, vol. 334, pp. 53–64. https://doi.org/10.1016/j.powtec.2018.04.062
21. Fu D., Chen Y., Rahman M.T., Zhou C.Q., D’Alessio J., Ferron K.J. Validation of the numerical model for blast furnace shaft process. AISTech – Iron and Steel Technology Conference Proceedings. 2012, article 92531, pp. 417–427.
22. De Castro J.A., Nogami H., Yagi J.I. Threedimensional multiphase mathematical modeling of the blast furnace based on the multifluid model. ISIJ International. 2002, vol. 42, no. 1, pp. 44–52. https://doi.org/10.2355/isijinternational.42.44
23. Peacey J.G., Davenport W.G. The Iron Blast Furnace: Theory and Practice. Elsevier Science, 2013, 266 p.
24. Baniasadi M., Peters B. Preliminary investigation on the capability of eXtended discrete element method for treating the dripping zone of a blast furnace. ISIJ International. 2018, vol. 58, no 1, pp. 25–34. https://doi.org/10.2355/isijinternational.ISIJINT-2017-344
25. Ramm A.N. Modern Blast Furnace Process. Мoscow: Metallurgiya, 1980, 304 p. (In Russ.).
26. Kitaev B.I., Yaroshenko Yu.G., Sukhanov E.L., Ovchinnikov Yu.N., Shvydkii V.S. Heat Engineering of Blast Furnace. Мoscow: Metallurgiya, 1978, 248 p. (In Russ.).
27. Tovarovskii I.G. Blast Furnace Smelting. Dnepropetrovsk: Porogi, 2009, 768 p. (In Russ.).
28. Bol’shakov V.I. Technology of HighEfciency EnergySaving Blast Furnace Smelting. Kiev: Naukova dumka, 2007, 411 p. (In Russ.).
29. Andronov V.N. Extraction of Ferrous Metals from Natural and Technogenic Raw Materials. Blast Furnace Process. Donetsk: NordPress, 2009, 377 p. (In Russ.).
30. Babarykin N.N. Theory and Technology of Blast Furnace Process. Magnitogorsk: MSTU, 2009, 257 p. (In Russ.).
31. Dmitriev A.N. Mathematical Modeling of Blast Furnace Process. Yekaterinburg: UB RAS, 2011, 162 p. (In Russ.).
32. Dobroskok V.A., Kuznetsov N.A., Tumanov A.I. Mathematical models of gas dynamics and reduction processes in a blast furnace. Izvestiya. Ferrous Metallurgy. 1985, no. 3, pp. 145, 146. (In Russ.).
33. Kurunov I.F., Yashchenko S.B. Methodology for calculating the technical and economic indicators of blastfurnace smelting. Nauchnye trudy Moskovskogo instituta stali i splavov. 1983, no. 152, pp. 57–64. (In Russ.).
34. Chentsov A.V., Chesnokov Yu.A., Shavrin S.V. Balance LogicalStatistical Model of Blast-Furnace Process. Yekaterinburg: UB RAS, 2003, 176 p. (In Russ.).
35. Ueda S., Natsui S., Nogami H., Yagi J.I., Ariyama T. Recent progress and future perspective on mathematical modeling of blast furnace. ISIJ International. 2010, vol. 50, no. 7, pp. 914–923. https://doi.org/10.2355/isijinternational.50.914
36. Emel’yanov S.V., Korovin S.K., Myshlyaev L.P., Rykov A.S., Evtushenko V.F. Theory and Practice of Prediction in Control Systems. Мoscow: Rossiiskie universitety, 2008, 487 p. (In Russ.).
37. Zagainov S.A., Onorin O.P., Gileva L.Yu., Volkov D.N., Tleugobulov B.S. Development and implementation of mathematical and software support for flexible technological modes of blast furnace operation. Stal’. 2000, no. 9, pp. 12–15. (In Russ.).
38. Spirin N.A., Ipatov Yu.V., Lobanov V.I., Krasnobaev V.A., Lavrov V.V., Rybolovlev V.Yu., Shvydkii V.S., Zagainov S.A., Onorin O.P. Information Systems in Metallurgy. Yekaterinburg: izd. USTU–UPI, 2001, 617 р. (In Russ.).
39. Spirin N.A., Lavrov V.V., Rybolovlev V.Yu., Gileva L.Yu., Krasnobaev A.V., Shvydkii V.S., Onorin O.P., Shchipanov K.A., Burykin A.A. Mathematical Modeling of Metallurgical Processes in APCS. Yekaterinburg: UrFU, 2014, 558 p. (In Russ.).
40. Pavlov A.V., Polinov A.A., Spirin N.А., Onorin O.P., Lavrov V.V. Use of model systems for solving new technological problems in blastfurnace production. Metallurgist. 2017, vol. 61, no. 56, pp. 448–454. https://doi.org/10.1007/s11015-017-0516-7
41. Murav’eva I.G., Togobitskaya D.N., Nesterov A.S., Ivancha N.G. A new level of blast furnace smelting control in FMI developments. Chernaya metallurgiya. Bulletin of Scientifc, Technical and Economic Information. 2019, vol. 75, no. 11, pp. 1231–1236. (In Russ.). https://doi.org/10.32339/0135-5910-2019-11-1231-1236
42. Hashimoto Y., Kitamura Y., Ohashi T., Sawa Y., Kano M. Transient modelbased operation guidance on blast furnace. Control Engineering Practice. 2019, vol. 82, pp. 130–141. https://doi.org/10.1016/j.conengprac.2018.10.009
43. Saxen H., Gao C., Gao Z. Datadriven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace – A review. IEEE Transactions on Industrial Informatics. 2013, vol. 9, no. 4, article 6341833, pp. 2213–2225. https://doi.org/10.1109/TII.2012.2226897
44. Spirin N.A., Polinov A.A., Gurin I.A., Beginyuk V.A., Pishnograev S.N., Istomin A.S. Information system for realtime prediction of the silicon content of iron in a blast furnace. Metallurgist. 2020, vol. 63, no. 910, pp. 898–905. https://doi.org/10.1007/s11015-020-00907-y
45. Frenkel’ M.M., Fedulov Yu.V., Belova O.A., etc. Expert control system for blast furnace smelting. Stal’. 1992, no. 7, pp. 15–18. (In Russ.).
46. Solov’ev V.I., Pavlova E.A., Krasnobaev V.A. Intelligent automated control system for metallurgical units. Chernye metally. 2004, no. 78, pp. 26–29.
47. Spirin N.A., Onorin O.P., Istomin A.S., Lavrov V.V., Gurin I.A. Information modelling system for diagnostics of different types of blastfurnace smelting deviations from normal conditions. IOP Conference Series: Materials Science and Engineering. 2018, vol. 411, no. 1, article 012072. https://doi.org/10.1088/1757-899X/411/1/012072
48. Ge A.X. A Neural Network Approach to the Modeling of Blast Furnace: Thesis (M. Eng.). Massachusetts Institute of Technology, 1999, 69 p.
49. Chen J. Predictive system for blast furnaces by integrating a neural network with qualitative analysis. Engineering Applications of Artifcial Intelligence. 2001, vol. 14, no. 1, pp. 77–85. https://doi.org/10.1016/S0952-1976(00)00062-2
50. Jimenez J., Mochon J., De Ayala J.S., Obeso F. Blast furnace hot metal temperature prediction through neural networksbased models. ISIJ International. 2004, vol. 44, no. 3, pp. 573–580. https://doi.org/10.2355/isijinternational.44.573
51. Sibagatullin S.K., Kharchenko A.S., Devyatchenko L.D. Application of Markov chains to the analysis of blast furnace operation efciency. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 8,pp. 649–656. https://doi.org/10.17073/0368-0797-2018-8-649-656
52. Kulakov S.M., Trofmov V.B. Intelligent Control Systems for Technological Objects: Theory and Practice. Novokuznetsk: SibSIU, 2009, 223 p. (In Russ.).
53. Xie H., Wang J., Wang G., Xiaodong Sun X.D. Application of big data in optimization of blast furnace operation. AISTech 2019 –Proceedings of the Iron & Steel Technology Conference. 2019, vol. 2019May, pp. 587–591. https://doi.org/10.33313/377/062
54. Zhang Y., Sukhram M., Cameron I., Bolen J., Rozo A. Industrial perspective of digital twin development and applications for iron and steel processes. AISTech – Iron and Steel Technology Conference Proceedings. 2020, vol. 3, pp. 1975–1984. https://doi.org/10.33313/380/213
55. Cameron I., Sukhram M., Lefebvre K., Davenport W. Blast Furnace Ironmaking: Analysis, Control and Optimization. 1st ed. Elsevier Science, 2019, 828 p. https://doi.org/10.1016/C2017-0-00007-1
56. Kazarinov L.S., Barbasova T.A. Elliptic component analysis. In: 2nd International Conference on Industrial Engineering, Applications and Manufacturing. ICIEAM. 2016, article 7910936. https://doi.org/10.1109/ICIEAM.2016.7910936
57. Shnayder D.A., Kazarinov L.S., Barbasova Т.А., Lipatnikov A.V. Data mining and modelpredictive approach for blast furnace thermal control. Intelligent Systems Conference. IntelliSys. 2017, vol. 2018 – January, article 8324364, pp. 653–660. https://doi.org/10.1109/IntelliSys.2017.8324364
58. Kamo K., Hamamoto K., Maeda T., Narazaki H., Yakeya M., Tanaka Y. Method for predicting gas channeling in blast furnace. R and D: Research and Development Kobe Steel Engineering Reports. 2018, vol. 68, no. 2, pp. 7–11.
59. Onorin O.P., Polinov A.A., Pavlov A.V., Spirin N.A., Gurin I.A. About a possibility of using blast furnace heat balance to control heat losses. Metallurgist. 2018, vol. 62, no. 34, pp. 218–224. https://doi.org/10.1007/s11015-018-0648-4
60. Polinov A.A., Pavlov A.V., Onorin O.P., Spirin N.A., Gurin I.A. Blast distribution over the air tuyeres of a blast furnace. Metallurgist. 2018, vol. 62, no. 56, pp. 418–424. https://doi.org/10.1007/s11015-018-0676-0
61. Kuang S., Li Z., Yu A. Review on modeling and simulation of blast furnace. Steel Research International. 2018, vol. 89, no. 1, article 1700071. https://doi.org/10.1002/srin.201700071
62. Pettersson F., Saxen H. Model for economic optimization of iron production in the blast furnace. ISIJ International. 2006, vol. 46, no. 9, pp. 1297–1305. https://doi.org/10.2355/isijinternational.46.1297
63. Gordon Y., Izumskiy N., Matveienko G., Chaika O., Lebid V., Vyshinskya O. Diagnostics, optimization and mathematical models of cokesinterhot metal production process. AISTech 2019 – Proceedings of the Iron & Steel Technology Conference. 2019, vol. 2019 – May, pp. 479–484. https://doi.org/10.33313/377/050
64. Bettinger D., Fritschek H., Schaler M., Kronberger T., Wollhofen R. A holistic approach to ironmaking digitalization. AISTech 2019 – Proceedings of the Iron & Steel Technology Conference. 2019, vol. 2019 – May, pp. 577–585. https://doi.org/10.33313/377/061
65. Alter M.A. Optimization of parameters of blast furnace smelting under conditions of plant operation with limited supply of coke, natural gas or ironbearing materials. AISTech – Iron and Steel Technology Conference Proceedings. 2020, vol. 1, pp. 302–309. https://doi.org/10.33313/380/035
66. Spirin N.A., Lavrov V.V., Rybolovlev V.Yu., Krasnobaev A.V., Onorin O.P., Kosachenko I.E. Model Decision Support Systems in APCS of Blast Furnace Smelting. Yekaterinburg: UrFU, 2011, 462 p. (In Russ.).
67. Waissi G.R., Demir M., Humble J.E., Lev B. Automation of strategy using IDEF0 – A proof of concept. Operations Research Perspectives. 2015, vol. 2, pp. 106–113. https://doi.org/10.1016/j.orp.2015.05.001
68. Hou C., Wang J., Chen C. Using hierarchical scenarios to predict the reliability of componentbased software. IEICE Transactions on Information and Systems. 2018, vol. E101D, no. 2, pp. 405–414. https://doi.org/10.1587/transinf.2017EDP7127
69. Chen B., Hsu H.P., Huang Y.L. Bringing desktop applications to the web. IT Professional. 2016, vol. 18, no. 1, article 7389272, pp. 34–40. https://doi.org/10.1109/MITP.2016.15
70. Phan J. MATLAB – C# for Engineers. CreateSpace Independent Publishing Platform. 2010, 322 p.
Review
For citations:
Spirin N.A., Lavrov V.V., Rybolovlev V.Yu., Shnaider D.A., Krasnobaev A.V., Gurin I.A. Digital transformation of pyrometallurgical technologies: State, scientifc problems and prospects of development. Izvestiya. Ferrous Metallurgy. 2021;64(8):588-598. (In Russ.) https://doi.org/10.17073/0368-0797-2021-8-588-598