Direct microalloying of steel with cerium under slags of СаО–SiO 2 – Ce2O3– 15 % Al2O3 –8 % MgO system with additional reducing agents
https://doi.org/10.17073/0368-0797-2021-8-581-587
Abstract
An assessment of the possibility of steel direct microalloying with cerium was performed using thermodynamic modeling of cerium reduction from slags of CaO– SiO2– Ce2O3 system containing 15 % Al2O3 and 8 % МgO, additional additives of reducing agents (aluminum or ferrosilicoaluminium), at temperatures of 1550 and 1650 °C using the HSC 6.1 Chemistry (Outokumpu) software package. Depending on the additional additives of aluminum or ferroglycoaluminium, metal temperature, slag basicity and content of cerium oxide, 0.228 to 40.5 ppm of cerium transfers into the metal. With an additional additive of aluminum from slag (Y1) containing 1.0 % of cerium oxide, 0.228 ppm of cerium is transferred to the metal at 1550 °C. An increase in the system temperature to 1650 °C is accompanied by a slight increase in cerium content, reaching no more than 0.323 ppm. When added to ferrosilicoaluminium metal, cerium content in the metal is higher and amounts to 0.402 and 0.566 ppm at 1550 and 1650 °C, respectively. When concentration of cerium oxide in the slag (Y2) increases to 7.0 %, more signifcant increase in cerium content in the metal is observed, reaching in temperature range of 1550 – 1650 °C, 1.65 – 2.31 ppm with aluminum additives and 2.90 – 4.05 ppm with ferrosilicoaluminium additives. The most noticeable increase in cerium content in the metal is observed with an increase in slag basicity. During formation of slags with basicity of 2 – 3, containing 1 – 7 % Ce2O3, the equilibrium concentration of cerium in the metal varies from 0.5 to 4 ppm with aluminum additives and 1 – 7 ppm with ferrosilicoaluminium additives at 1550 °C. Slags transfer to the increased (up to 3 – 5) basicity is accompanied by an increase in the equilibrium content of cerium in the metal to 4 – 12 ppm with aluminum additives and 7 – 20 ppm with ferrosilicoaluminium additives at Ce2O3 content of 3 – 7 % and, as a result, an increase in efciency of cerium reduction process.
Keywords
About the Authors
A. G. UpolovnikovaRussian Federation
Alena G. Upolovnikova, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Steel and Ferroalloys
101 Amundsena Str., Yekaterinburg 620016
A. A. Babenko
Russian Federation
Anatolii A. Babenko, Dr. Sci. (Eng.), Chief Researcher of the Laboratory of Steel and Ferroalloys
101 Amundsena Str., Yekaterinburg 620016
L. A. Smirnov
Russian Federation
Leonid A. Smirnov, Academician, Dr. Sci. (Eng.), Chief Researcher of the Laboratory of Steel and Ferroalloys
101 Amundsena Str., Yekaterinburg 620016
L. Yu. Mikhailova
Russian Federation
Lyudmila Yu. Mikhailova, Cand. Sci. (Eng.), Research Associate of the Laboratory of Steel and Ferroalloys
101 Amundsena Str., Yekaterinburg 620016
References
1. Gol’dshtein Ya.G., Efmova L.B. Modifcation and Microalloying of Cast Iron and Steel. Moscow: Metallurgiya, 1986, 271 p. (In Russ.).
2. Pilyushenko V.L., Vikhlevshchuk V.A. Scientifc and Technological Foundations of Steel Microalloying. Moscow: Metallurgiya, 1994, 384 p. (In Russ.).
3. Petryna D.Yu., Kozak О.L., Shulyar B.R., Petryna Yu.D., Hredil М.I. Influence of alloying by rareearth metals on the mechanical properties of 17G1S pipe steel. Materials Science. 2013, vol. 4, no. 5, pp. 575–581.https://doi.org/10.1007/s11003-013-9540-3
4. Makarenko V.D., Kindrachuk M.V., Bondarev A.A., Murav’ev K.A Influence of cerium on mechanical and corrosion properties of low alloyed pipe steels. Kompressornoe i energeticheskoe mashinostroenie. 2014, no. 3, pp. 24–29. (In Russ.).
5. Torkamani H., Raygan Sh., GarciaMateo C., Rassizadehghani J., Palizdar Y., SanMartin D. Evolution of pearlite microstructure in lowcarbon cast microalloyed steel due to the addition of La and Ce. Metallurgical and Materials Transactions A. 2018, vol. 49, no. 10, pp. 4495–4508. https://doi.org/10.1007/s11661-018-4796-8
6. Yang X., Long H., Cheng G., Wu C., Wu B. Effect of refning slag containing Ce2O3 on steel cleanliness. Journal of Rare Earths. 2011, vol. 29, no. 11, pp. 1079–1083. https://doi.org/10.1016/S1002-0721(10)60602-3
7. Wu C., Cheng G., Long H., Yang X. A thermodynamic model for evaluation of mass action concentrations of Ce 2O3contained slag systems based on the ion and molecule coexistence theory. High Temperature Materials and Processes. 2013, vol. 32, no. 3, pp. 207 – 214. https://doi.org/10.1515/htmp-2012-0119
8. Feifei H., Bo L., Da L., Ligang L., Ting D., Xuejun R., Qingxiang Y. Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refnement mechanism. Journal of Rare Earths. 2011, vol. 29, no. 6, pp. 609–613. https://doi.org/10.1016/S1002-0721(10)60507-8
9. Guo M.X., Suito H. Effect of dissolved cerium on austenite grain growth in an Fe – 0.20 mass % C – 0.02 mas % P alloy. ISIJ International. 1999, vol. 39, no. 11, pp. 1169–1175. https://doi.org/10.2355/isijinternational.39.1169
10. Ueda S., Morita K., Sano N. Activity of AlO1.5 for the CeO1.5– CaO–AlO 1.5 system at 1773 K. ISIJ International. 1998, vol. 38, no. 12, pp. 1292–1296.
11. Wu C., Cheng G., Long H. Effect of Ce2O3 and CaO/Al2O3 on the phase, melting temperature and viscosity of CaO–Al2O3–10 mass % SiO 2 based slags. High Temperature Materials and Processes. 2014, vol. 33, no. 1, pp. 77 – 84. https://doi.org/10.1515/htmp-2013-0025
12. Hao F., Liao B., Li D., Dan T., Ren X., Yang Q., Liu L. Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refnement mechanism. Journal of Rare Earths. 2011, vol. 29, no. 6, pp. 609–613. https://doi.org/10.1016/S1002-0721(10)60507-8
13. Wang L.J., Wang Q., Li J.M., Chou K.C. Dissolution mechanism of Al 2O3 in refning slags containing Ce2O3. Journal of Mining and Metallurgy. Section B: Metallurgy. 2016, vol. 52, no. 1, pp. 35–40. https://doi.org/10.2298/JMMB140706004W
14. Anacleto N.M., Lee H.G., Hayes P.C. Sulphur partition between СаО–SіО 2–Се2О3 slags and carbonsaturated iron. ISIJ International. 1993, vol. 33, no. 5, pp. 549–555. https://doi.org/10.2355/isijinternational.33.549
15. Mikhailov G.G., Makrovets L.A., Smirnov L.A. Thermodynamic modeling of the phase equilibria with oxide systems containing rareearth metals. Report 3. State diagrams of oxide systems with Ce2O3 and CeO 2. Vestnik YuUrGU. Seriya “Metallurgiya”. 2015, vol. 15, no. 4, pp. 5–14. (In Russ.). https://doi.org/10.14529/met150401
16. Babenko A.A., Smirnov L.A., Upolovnikova A.G., Nechvoglod O.V. Thermodynamic modeling of cerium reduction from slags of СаО – SiO 2 – Ce2O3 – 15 % Al2O3 – 8 % MgO system with aluminum dissolved in metal. Butlerovskie soobshcheniya. 2019, vol. 59, no. 9, pp. 140–145. (In Russ.).
17. Babenko A.A., Smirnov L.A., Upolovnikova A.G., Mikhailova L.Yu. Construction of diagrams of equilibrium content of cerium in metal under slag of СаО – SiO2 – Ce2O3 – 15 % Al2O3 – 8 % MgO system. Butlerovskie soobshcheniya. 2019, vol. 60, no. 10, pp. 140–145. (In Russ.).
18. Babenko A.A., Zhuchkov V.I., Leont’ev L.I., Upolovnikova A.G., Konyshev A.A. Equilibrium distribution of boron between metal of Fe – C – Si – Al system and boron slag. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 9, pp. 752–758. (In Russ.). https://doi.org/10.17073/0368-0797-2017-7-752-758
19. Kim V.A., Nikolai E.I., Akberdin A.A., Kulikov I.S. Planning an Experiment in Study of Physicochemical Properties of Metallurgical Slags. Manual. AlmaAta: Nauka, 1989, 116 p. (In Russ.).
20. Kim V.A., Akberdin A.A., Kulikov I.S., Nikolai E.I. Use of simplex lattice method to construct compositionviscosity diagrams. Izvestiya. Ferrous Metallurgy. 1980, no. 9, pp. 167. (In Russ.).
Review
For citations:
Upolovnikova A.G., Babenko A.A., Smirnov L.A., Mikhailova L.Yu. Direct microalloying of steel with cerium under slags of СаО–SiO 2 – Ce2O3– 15 % Al2O3 –8 % MgO system with additional reducing agents. Izvestiya. Ferrous Metallurgy. 2021;64(8):581-587. (In Russ.) https://doi.org/10.17073/0368-0797-2021-8-581-587