Hydrogen removal in circulating vacuum degasser under conditions of PJSC “NLMK”
https://doi.org/10.17073/0368-0797-2021-8-543-549
Abstract
For highquality steel smelting, stagebystage production is required, which has a complex of metallurgical units capable for producing products with high performance properties and low content of harmful impurities. One of the harmful impurities is hydrogen, so it is important to limit its content in the metal. To ensure the specifed hydrogen content, the metal in the steel outoffurnace treatment at Converter Shop No. 2 (CS2) of PJSC “Novolipetsk Metallurgical Plant” (“NLMK”) is subjected to vacuum treatment in a circulating vacuum degasser. Despite the prevalence of circulating vacuum derassers, theoretically, mechanism of hydrogen removal in these metallurgical units has been insufciently studied. To increase efciency of hydrogen removal, theoretical calculations were performed to remove it from the metal. There are several mechanisms for hydrogen removing: direct transfer of hydrogen from metal to the surrounding space; formation of gas bubbles in metal and their direct ascent; nucleation of hydrogen bubbles at the border of refractory wall and metal; removal of hydrogen by metal blowing with neutral gas (argon). It is shown that the main ways of hydrogen removal in a circulating vacuum degasser are direct transfer of hydrogen from metal to the surrounding space and blowing of melt with transporting gas. In the CS2 of PJSC “NLMK”, both ways are implemented at a circulating vacuum degasser. Vacuum pumps provide pressure in a vacuum chamber of less than 101.3 Pa (0.001 atm.). It promotes intensive removal of hydrogen from the metal surface. To ensure circulation of metal, transporting gas argon is supplied to the inlet pipe of the RH degasser, which also takes part in removal of dissolved gases by transferring hydrogen to neutral gas bubbles. Additionally, performed calculations have shown that the main way of degassing in conditions of CS2 of PJSC “NLMK” is removal of hydrogen into the bubbles of carrier gas.
About the Authors
K. N. PleshivtsevRussian Federation
Konstantin N. Pleshivtsev, Head of the Section of Converter Shop No. 2
2 Metallurgov Sqr., Lipetsk 398040
O. Yu. Sheshukov
Russian Federation
Oleg Yu. Sheshukov, Dr. Sci. (Eng.), Prof., Director of the Institute of New Materials and Technologies, Chief Researcher of the Laboratory of Powder, Composite and Nano-Materials
19 Mira Str., Yekaterinburg 620002
28 Mira Str., Yekaterinburg 620002
A. A. Metelkin
Russian Federation
Anatolii A. Metelkin, Cand. Sci. (Eng.), Senior Lecturer of the Chair
of Metallurgical Technology
59 Krasnogvardeyskaya Str., Nizhny Tagil, Sverdlovsk Region 622031
O. I. Shevchenko
Russian Federation
Oleg I. Shevchenko, Dr. Sci. (Eng.), Prof., Head of the Chair of Metallurgical Technology
59 Krasnogvardeyskaya Str., Nizhny Tagil, Sverdlovsk Region 622031
References
1. Bigeev A.M., Bigeev V.A. Metallurgy of Steel. Theory and Technology of Steel Smelting. Magnitogorsk: MSTU, 2000, 544 p. (In Russ.).
2. Dyudkin D.A., Kisilenko V.V. Production of Steel. Vol. 3. Out-offurnace Metallurgy of Steel. Moscow: Teplotekhnik, 2008, 544 p. (In Russ.).
3. Shapovalov V.I., Trofmenko V.V. Flakes and Hydrogen Control in Steel. Мoscow: Metallurgiya, 1987, 160 p. (In Russ.).
4. Ardelean E., Hepuț T., Vătășescu M., Crișan E. Researches regarding the influence of vacuum parameters on the efciency of gas removal from the liquid steel. Solid State Phenomena. 2016, vol. 254, pp. 218–223. https://doi.org/10.4028/www.scientifc.net/SSP.254.218
5. Socalici A., Popa E., Heput T., Drăgoi F. Researches regarding the improvement of the steel quality. Solid State Phenomena. 2014, vol. 216, pp. 273–278. https://doi.org/10.4028/www.scientifc.net/SSP.216.273
6. Yu S., Miettinen J., Louhenkilpi S. Numerical study on the removal of hydrogen and nitrogen from the melt of medium carbon steel in vacuum tank degasser. Materials Science Forum. 2013, vol. 762, pp. 253–260. https://doi.org/10.4028/www.scientifc.net/MSF.762.253
7. Steneholm K., Andersson M., Tilliander A., Jönsson P.G. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmaking & Steelmaking. 2013, vol. 40, no. 3, pp. 199–205. https://doi.org/10.1179/1743281212Y.0000000029
8. Fábián E.R., Dévényi L. Hydrogen in the plastic deformed steel. Materials Science Forum. 2007, vol. 537538, pp. 33–40. https://doi.org/10.4028/0-87849-426-x.33
9. Barannikova S.A., Lunev A.G., Nadezhkin M.V., Zuev L.B. Effect of hydrogen on plastic strain localization of construction steels. Advanced Materials Research. 2014, vol. 880, pp. 42–47. http://doi.org/10.4028/www.scientifc.net/AMR.880.42
10. Morozov A.N. Hydrogen and Nitrogen in Steel. Moscow: Metallurgiya, 1968, 283 p. (In Russ.).
11. Efmov S.V. Technological aspects of hydrogen removal using a ladle vacuum degasser for steel. In: Converter Steelmaking. Coll of Sci. Papers. Yekaterinburg: UB RAS, 2003, pp. 203–207. (In Russ.).
12. Knüppel H. Desoxydation und Vakuumbehandlung von Stahlschmelzen. Bd. 2, Grundlagen und verfahren der Pfannenmetallurgie. Düsseldorf: Verl. Stahleisen, 1983. (In Germ.). (Russ. ed.: Knyuppel’ G. Raskislenie i vakuumnaya obrabotka stali. Osnovy i tekhnologiya kovshovoi metallurgii. Moscow: Metallurgiya, 1984, 414 p.).
13. Knüppel H. Desoxydation und Vakuumbehandlung von Stahlschmelzen. Bd. 1. Thermodynamische und kinetische Grundlagen. Düsseldorf: Verl. Stahleisen, 1983. (In Germ.) (Russ. ed.: Knyuppel’ G. Raskislenie i vakuumnaya obrabotka stali. Termodinamicheskie i kineticheskie zakonomernosti. Moscow: Metallurgiya, 1973, 312 p. (In Russ.).
14. Metelkin A.A., Sheshukov O.Yu., Nekrasov I.V., Shevchenko O.I., Korogodskii A.Yu. On removing hydrogen from metal in a circulating vacuum degasser. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2016, no. 1 (18), pp. 29–33. (In Russ.).
15. Selivanov V.N., Budanov B.A., Alankin D.V. Kinetic model of hydrogen removal during circulation vacuum degassing of steel. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2013, no. 1 (13), pp. 31–33. (In Russ.).
16. Minaev Yu.A., Yakovlev V.V. Physical Chemistry in Metallurgy (Thermodynamics. Hydrodynamics. Kinetics). Мoscow: NUST “MISIS”, 2001, 320 р. (In Russ.).
17. Gizatulin R.A., Dmitrienko V.I. Out-of-Furnace and Ladle Processing of Steel. Novokuznetsk: izd. SibSIU, 2006, 181 p. (In Russ.).
18. Hupfer P., Abratis H., Maas H., Manfred M. Strömungsmechanische und reaktionskinetische Vorgänge bei der Vakuumbehandlung von flüssigem Stahl nach dem Umlaufverfahren. Archiv für das Eisenhüttenwesen. 1971, vol. 42, no. 11, pp. 761–767. (In Germ.). https://doi.org/10.1002/srin.197102663
19. Yamaguchi K., Kishimoto Y., Sakuraya T., Fujii T., Aratani M., Nishikawa H. Effect of refning conditions for ultra low carbon steel on decarburization reaction in RH degasser. ISIJ International. 1992, vol. 32, no. 1, pp. 126–135. https://doi.org/10.2355/isijinternational.32.126
20. YoungGeun Park, WonChul Doo, KyungWoo Yi, SangBok An. Numerical calculation of circulation flow rate in the degassing RheinstahlHeraeus process. ISIJ International. 2000, vol. 40, no. 8, pp. 749–755. https://doi.org/10.2355/isijinternational.40.749
21. YoungGeun Park, KyungWoo Yi, SangBog Ahn. The effect of operating parameters and dimensions of the RH system on melt circulation using numerical calculations. ISIJ International. 2001, vol. 41, no. 5, pp. 403–409. https://doi.org/10.2355/isijinternational.41.403
22. Kato Y., Fujii T., Suetsugu S., Ohmiya S., Aizawa K. Effect of geometry of vacuum vessel on decarburization rate and fnal carbon content in RH degasser. Tetsu-to-Hagane. 1993, vol. 79, no 11, pp. 1248–1253.https://doi.org/10.2355/tetsutohagane1955.79.11_1248
23. Takahashi M., Matsumoto H., Saito T. Mechanism of decarburization in RH degasser. ISIJ International. 1995, vol. 35, no. 12, pp. 1452–1458. https://doi.org/10.2355/isijinternational.35.1452
24. Kitamura T., Miyamoto K., Tsujino R., Mizoguchi S., Kato K. Mathematical model for nitrogen in vacuum degasser desorption and decarburization reaction in vacuum degasser. ISIJ International. 1996, vol. 36, no. 4, pp. 395–401. https://doi.org/10.2355/isijinternational.36.395
25. Ono K., Yanagida M., Katoh T., Miwa M., Okamoto T. The circulation rate of RHdegassing process by water model experiment. Denki Seiko. 1981, vol. 56, no. 7, pp. 149–157.
26. Tembergen D., Tevort R., Robei R. Treatment of steel in a ladle using technology of circulating vacuum degassing. Metallurgicheskoe proizvodstvo i tekhnologiya. 2007, no. 2, pp. 12–16. (In Russ.).
27. Kudrin V.A. Theory and Technology of Steelmaking. Мoscow: Mir, AST, 2003, 528 p. (In Russ.).
Review
For citations:
Pleshivtsev K.N., Sheshukov O.Yu., Metelkin A.A., Shevchenko O.I. Hydrogen removal in circulating vacuum degasser under conditions of PJSC “NLMK”. Izvestiya. Ferrous Metallurgy. 2021;64(8):543-549. (In Russ.) https://doi.org/10.17073/0368-0797-2021-8-543-549