Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Hydrogen removal in circulating vacuum degasser under conditions of PJSC “NLMK”

https://doi.org/10.17073/0368-0797-2021-8-543-549

Abstract

For high­quality steel smelting, stage­by­stage production is required, which has a complex of metallurgical units capable for producing products with high performance properties and low content of harmful impurities. One of the harmful impurities is hydrogen, so it is important to limit its content in the metal. To ensure the specifed hydrogen content, the metal in the steel out­of­furnace treatment at Converter Shop No. 2 (CS­2) of PJSC “Novolipetsk Metallurgical Plant” (“NLMK”) is subjected to vacuum treatment in a circulating vacuum degasser. Despite the prevalence of circulating vacuum derassers, theoretically, mechanism of hydrogen removal in these metallurgical units has been insufciently studied. To increase efciency of hydrogen removal, theoretical calculations were performed to remove it from the metal. There are several mechanisms for hydrogen removing: direct transfer of hydrogen from metal to the surrounding space; formation of gas bubbles in metal and their direct ascent; nucleation of hydrogen bubbles at the border of refractory wall and metal; removal of hydrogen by metal blowing with neutral gas (argon). It is shown that the main ways of hydrogen removal in a circulating vacuum degasser are direct transfer of hydrogen from metal to the surrounding space and blowing of melt with transporting gas. In the CS­2 of PJSC “NLMK”, both ways are implemented at a circulating vacuum degasser. Vacuum pumps provide pressure in a vacuum chamber of less than 101.3 Pa (0.001 atm.). It promotes intensive removal of hydrogen from the metal surface. To ensure circulation of metal, transporting gas argon is supplied to the inlet pipe of the RH degasser, which also takes part in removal of dissolved gases by transferring hydrogen to neutral gas bubbles. Additionally, performed calculations have shown that the main way of degassing in conditions of CS­2 of PJSC “NLMK” is removal of hydrogen into the bubbles of carrier gas.

About the Authors

K. N. Pleshivtsev
PJSC “Novolipetsk Metallurgical Plant”
Russian Federation

 Konstantin N. Pleshivtsev, Head of the Section of Converter Shop No. 2 

2 Metallurgov Sqr., Lipetsk 398040



O. Yu. Sheshukov
Ural Federal University named after the frst President of Russia B.N. Yeltsin; Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Russian Federation

 Oleg Yu. Sheshukov, Dr. Sci. (Eng.), Prof., Director of the Institute of New Materials and Technologies, Chief Researcher of the Laboratory of Powder, Composite and Nano-Materials 

19 Mira Str., Yekaterinburg 620002

 28 Mira Str., Yekaterinburg 620002 



A. A. Metelkin
Nizhny Tagil Institute (Branch) of the Ural Federal University named after the frst President of Russia B.N. Yeltsin
Russian Federation

 Anatolii A. Metelkin, Cand. Sci. (Eng.), Senior Lecturer of the Chair
of Metallurgical Technology 

 59 Krasnogvardeyskaya Str., Nizhny Tagil, Sverdlovsk Region 622031 



O. I. Shevchenko
Nizhny Tagil Institute (Branch) of the Ural Federal University named after the frst President of Russia B.N. Yeltsin
Russian Federation

 Oleg I. Shevchenko, Dr. Sci. (Eng.), Prof., Head of the Chair of Metallurgical Technology 

 59 Krasnogvardeyskaya Str., Nizhny Tagil, Sverdlovsk Region 622031 



References

1. Bigeev A.M., Bigeev V.A. Metallurgy of Steel. Theory and Technology of Steel Smelting. Magnitogorsk: MSTU, 2000, 544 p. (In Russ.).

2. Dyudkin D.A., Kisilenko V.V. Production of Steel. Vol. 3. Out-offurnace Metallurgy of Steel. Moscow: Teplotekhnik, 2008, 544 p. (In Russ.).

3. Shapovalov V.I., Trofmenko V.V. Flakes and Hydrogen Control in Steel. Мoscow: Metallurgiya, 1987, 160 p. (In Russ.).

4. Ardelean E., Hepuț T., Vătășescu M., Crișan E. Researches regarding the influence of vacuum parameters on the efciency of gas removal from the liquid steel. Solid State Phenomena. 2016, vol. 254, pp. 218–223. https://doi.org/10.4028/www.scientifc.net/SSP.254.218

5. Socalici A., Popa E., Heput T., Drăgoi F. Researches regarding the improvement of the steel quality. Solid State Phenomena. 2014, vol. 216, pp. 273–278. https://doi.org/10.4028/www.scientifc.net/SSP.216.273

6. Yu S., Miettinen J., Louhenkilpi S. Numerical study on the removal of hydrogen and nitrogen from the melt of medium carbon steel in vacuum tank degasser. Materials Science Forum. 2013, vol. 762, pp. 253–260. https://doi.org/10.4028/www.scientifc.net/MSF.762.253

7. Steneholm K., Andersson M., Tilliander A., Jönsson P.G. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmaking & Steelmaking. 2013, vol. 40, no. 3, pp. 199–205. https://doi.org/10.1179/1743281212Y.0000000029

8. Fábián E.R., Dévényi L. Hydrogen in the plastic deformed steel. Materials Science Forum. 2007, vol. 537­538, pp. 33–40. https://doi.org/10.4028/0-87849-426-x.33

9. Barannikova S.A., Lunev A.G., Nadezhkin M.V., Zuev L.B. Effect of hydrogen on plastic strain localization of construction steels. Advanced Materials Research. 2014, vol. 880, pp. 42–47. http://doi.org/10.4028/www.scientifc.net/AMR.880.42

10. Morozov A.N. Hydrogen and Nitrogen in Steel. Moscow: Metallurgiya, 1968, 283 p. (In Russ.).

11. Efmov S.V. Technological aspects of hydrogen removal using a ladle vacuum degasser for steel. In: Converter Steelmaking. Coll of Sci. Papers. Yekaterinburg: UB RAS, 2003, pp. 203–207. (In Russ.).

12. Knüppel H. Desoxydation und Vakuumbehandlung von Stahlschmelzen. Bd. 2, Grundlagen und verfahren der Pfannenmetallurgie. Düsseldorf: Verl. Stahleisen, 1983. (In Germ.). (Russ. ed.: Knyuppel’ G. Raskislenie i vakuumnaya obrabotka stali. Osnovy i tekhnologiya kovshovoi metallurgii. Moscow: Metallurgiya, 1984, 414 p.).

13. Knüppel H. Desoxydation und Vakuumbehandlung von Stahlschmelzen. Bd. 1. Thermodynamische und kinetische Grundlagen. Düsseldorf: Verl. Stahleisen, 1983. (In Germ.) (Russ. ed.: Knyuppel’ G. Raskislenie i vakuumnaya obrabotka stali. Termodinamicheskie i kineticheskie zakonomernosti. Moscow: Metallurgiya, 1973, 312 p. (In Russ.).

14. Metelkin A.A., Sheshukov O.Yu., Nekrasov I.V., Shevchenko O.I., Korogodskii A.Yu. On removing hydrogen from metal in a circulating vacuum degasser. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2016, no. 1 (18), pp. 29–33. (In Russ.).

15. Selivanov V.N., Budanov B.A., Alankin D.V. Kinetic model of hydrogen removal during circulation vacuum degassing of steel. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2013, no. 1 (13), pp. 31–33. (In Russ.).

16. Minaev Yu.A., Yakovlev V.V. Physical Chemistry in Metallurgy (Thermodynamics. Hydrodynamics. Kinetics). Мoscow: NUST “MISIS”, 2001, 320 р. (In Russ.).

17. Gizatulin R.A., Dmitrienko V.I. Out-of-Furnace and Ladle Processing of Steel. Novokuznetsk: izd. SibSIU, 2006, 181 p. (In Russ.).

18. Hupfer P., Abratis H., Maas H., Manfred M. Strömungsmechanische und reaktionskinetische Vorgänge bei der Vakuumbehandlung von flüssigem Stahl nach dem Umlaufverfahren. Archiv für das Eisenhüttenwesen. 1971, vol. 42, no. 11, pp. 761–767. (In Germ.). https://doi.org/10.1002/srin.197102663

19. Yamaguchi K., Kishimoto Y., Sakuraya T., Fujii T., Aratani M., Nishikawa H. Effect of refning conditions for ultra low carbon steel on decarburization reaction in RH degasser. ISIJ International. 1992, vol. 32, no. 1, pp. 126–135. https://doi.org/10.2355/isijinternational.32.126

20. Young­Geun Park, Won­Chul Doo, Kyung­Woo Yi, Sang­Bok An. Numerical calculation of circulation flow rate in the degassing Rheinstahl­Heraeus process. ISIJ International. 2000, vol. 40, no. 8, pp. 749–755. https://doi.org/10.2355/isijinternational.40.749

21. Young­Geun Park, Kyung­Woo Yi, Sang­Bog Ahn. The effect of operating parameters and dimensions of the RH system on melt circulation using numerical calculations. ISIJ International. 2001, vol. 41, no. 5, pp. 403–409. https://doi.org/10.2355/isijinternational.41.403

22. Kato Y., Fujii T., Suetsugu S., Ohmiya S., Aizawa K. Effect of geometry of vacuum vessel on decarburization rate and fnal carbon content in RH degasser. Tetsu-to-Hagane. 1993, vol. 79, no 11, pp. 1248–1253.https://doi.org/10.2355/tetsutohagane1955.79.11_1248

23. Takahashi M., Matsumoto H., Saito T. Mechanism of decarburization in RH degasser. ISIJ International. 1995, vol. 35, no. 12, pp. 1452–1458. https://doi.org/10.2355/isijinternational.35.1452

24. Kitamura T., Miyamoto K., Tsujino R., Mizoguchi S., Kato K. Mathematical model for nitrogen in vacuum degasser desorption and decarburization reaction in vacuum degasser. ISIJ International. 1996, vol. 36, no. 4, pp. 395–401. https://doi.org/10.2355/isijinternational.36.395

25. Ono K., Yanagida M., Katoh T., Miwa M., Okamoto T. The circulation rate of RH­degassing process by water model experiment. Denki Seiko. 1981, vol. 56, no. 7, pp. 149–157.

26. Tembergen D., Tevort R., Robei R. Treatment of steel in a ladle using technology of circulating vacuum degassing. Metallurgicheskoe proizvodstvo i tekhnologiya. 2007, no. 2, pp. 12–16. (In Russ.).

27. Kudrin V.A. Theory and Technology of Steelmaking. Мoscow: Mir, AST, 2003, 528 p. (In Russ.).


Review

For citations:


Pleshivtsev K.N., Sheshukov O.Yu., Metelkin A.A., Shevchenko O.I. Hydrogen removal in circulating vacuum degasser under conditions of PJSC “NLMK”. Izvestiya. Ferrous Metallurgy. 2021;64(8):543-549. (In Russ.) https://doi.org/10.17073/0368-0797-2021-8-543-549

Views: 628


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)