Thermodynamic modeling of iron and zinc reduction from B2O3 ‒ CaO ‒ Fe2O3 ‒ ZnО melt by СО ‒ CO2 and H2 ‒ Н2О mixtures
https://doi.org/10.17073/0368-0797-2021-7-488-497
Abstract
The paper presents the thermodynamic modeling results of zinc and iron reduction from B2O3 ‒ CaO ‒ Fe2O3 ‒ ZnО melts by CO ‒ CO2 and H2 ‒ H2O mixtures containing 0 – 60 % CO2 (H2O) at 1273 – 1673 K using a technique describing the reduction of metals from an oxide melt by gas in bubbling processes, under conditions that provide an approximation to real systems. Its originality is equilibrium determination for each individual portion of gas supplied into the working fluid. The reducible metals oxides content in each calculation cycle is taken from the previous data. During the calculations, changes in the content of zinc (СZnO ) and iron (СFe2O3 , СFe3O4 and СFeO ) oxides in the melt and the degree of their reduction were estimated. When using CO or H2 as a reducing agent, this process proceeds in three stages. In the first stage, Fe2O3 is reduced to Fe3O4 and FeO. CFe2O3 values decrease to almost zero, while CFe3O4 and CFeO increase simultaneously. By the end of the stage, СFe3O4 reaches its maximum value. At the second stage, the Fe3O4 → FeO transition occurs, when СFeO values reach its maximum. At these stages, there is a slight increase in the CZnO . At the third stage, the values CFeO and CZnO decrease, and iron and zinc are reduced. An increase in temperature dramatically reduces the gas consumption for zinc reduction by 2 – 3 times, and the replacement of CO with H2 reduces it by less than 20 %. In the presence of oxidizing agents (CO or H2O), only zinc is reduced. The process ends when the final content of zinc oxide in the melt corresponds to the equilibrium with the initial gas composition. The higher the temperature, the less CZnO is. The obtained data are useful for the development of technologies for the selective recovery of metals.
Keywords
About the Authors
A. S. VusikhisRussian Federation
Aleksandr S. Vusikhis, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Pyrometallurgy of Non-Ferrous Metals
101 Amundsena Str., Yekaterinburg 620016
L. I. Leont’ev
Russian Federation
Leopol’d I. Leont’ev, Academician, Adviser, Russian Academy of Sciences, Dr. Sci. (Eng.), Prof., National University of Science and Technology “MISIS”, Chief Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science
101 Amundsena Str., Yekaterinburg 620016;
4 Leninskii Ave., Moscow 119049;
32a Leninskii Ave., Moscow 119991
E. N. Selivanov
Russian Federation
Evgenii N. Selivanov, Dr. Sci. (Eng.), Head of the Laboratory of Pyrometallurgy of Non-Ferrous Metals
101 Amundsena Str., Yekaterinburg 620016
References
1. Wang C., Li K., Yang H., Li C. Probing study on separating Pb, Zn, and Fe from lead slag by coal-based direct reduction. ISIJ International. 2017, vol. 57, no. 6, pp. 996–1003. https://doi.org/10.2355/isijinternational.ISIJINT-2016-683
2. Leont’ev L.I., Dyubanov V.G. Technogenic waste of ferrous and non-ferrous metallurgy and environmental problems. Ekologiya i promyshlennost’ Rossii. 2011, no 4, pp. 32–35. (In Russ.).
3. Yakornov S.A., Pan’shin A.M., Kozlov P.A., Ivakin D.A. Development of technology and instrumental scheme of pyrometallurgical processing of ferrous metallurgy dusts. Tsvetnye metally. 2017, no. 9, pp. 39-44. (In Russ.). https://doi.org/10.17580/tsm.2017.09.06
4. Gorlova O.E., Tarasova A.E. Efremova O.G. Finding ways of complex processing of blast furnace sludge. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova. 2005, no 4 (12), pp. 4–6. (In Russ.).
5. Guezennec A.–G., Huber J.–C., Patisson F., Sessieq P., Birat J.–P., Ablitzer D. Dust formation in electric arc furnace: Birth of the particles. Powder Technology. 2005, vol. 157, no. 1–3, pp. 2–11. https://doi.org/10.1016/j.powtec.2005.05.006
6. Okunev A.I., Kost’yanovskii I.A., Donchenko P.A. Slag Fuming. Moscow: Metallurgiya, 1966, 259 p. (In Russ.).
7. Tarasov A.V., Besser A.D., Mal’tsev V.I. Metallurgical Processing of Secondary Zinc Raw Materials. Moscow: GINTSVETMET, 2004, 219 p. (In Russ.).
8. Kozlov P.A. Development of recycling of metallurgical technogenic waste. Tsvetnaya metallurgiya. 2014, no. 2, pp. 45–52. (In Russ.).
9. Reddy R.G., Prabhu V.L., Mantha D. Zinc fuming from lead blast furnace slag. High Temperature Materials and Processes. 2003, vol. 21, no. 6, pp 377–386.
10. Verscheure K., van Camp M., Blanpain B., Wollants P., Hayes P.C., Jak E. Zinc fuming processes for treatment of zinc containing residues. In: Proceedings of Lead and Zinc, Osaka, 2005. MMIJ, 2005, pp. 943–960.
11. Morcali M.H., Yucel O., Aydin A., Derin B. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace. Journal of Mining and Metallurgy. Section B – Metallurgy. 2012, vol. 48, no. 2, pp. 173–184. http://doi.org/10.2298/JMMB111219031M
12. Zhang H.N., Li J.L., Xu A.J., Yang Q.X., He D.F., Tian N.Y. Carbothermic reduction of zinc and iron oxides in electric arc furnace dust. Journal of Iron and Steel Research International. 2014, vol. 21, no. 4, pp 427–432. https://doi.org/10.1016/S1006-706X(14)60066-2
13. Tyushnyakov S.N., Selivanov E.N., Chumarev V.M. Estimation of rate of zinc distillation from slag in direct-current ARC furnace. Tsvetnye metally. 2013, no. 12, pp. 13–17. (In Russ.).
14. Kozyrev V.V. Distillation of zinc from slag during fuming by natural gas. Tsvetnye metally. 2009, no 2, pp. 61-64. (In Russ.).
15. Kozyrev V.V., Besser A.D., Paretskii V.M. On zinc extraction from lead smelting slags. Elektrometallurgiya. 2013, no 6, pp. 31–35. (In Russ.).
16. Romenets V.A. Romelt Process. I&SM (Iron & Steelmaker). 1995, vol. 22, no. 1, pp. 37–41.
17. Dorofeev G.A., Yantovskii P.R., Smirnov K.G., Stepanov Ya.M. The process “orien” for smelting of high-quality steels from ore and energy raw materials based on the principle of the energy selfsupplying. Chernye metally. 2017, no. 5, pp 17–23. (In Russ.).
18. Schlesinger M.E., King M.J., Sole K.C., Davenport W.G. Extractive Metallurgy of Copper. 5th Edition, Elsevier, 2011, 481 p.
19. Vignes A. Extractive Metallurgy 3: Processing Operations and Routes. ISTE Ltd., John Wiley & Sons, Inc., 2011, 352 p.
20. Bakker M.L., Nikolic S., Burrows A.S., Alvear G.R.F. ISACONVERTTM – continuous converting of nickel/PGM mattes. Journal of the Southern African Institute of Mining and Metallurgy. 2011, vol. 111, no. 10, pp. 285–294.
21. Errington B., Arthur P., Wang J., Dong Y. The ISA-YMG lead smelting process. In: Proceedings of the Int. Symp. on Lead and Zinc Processing, Osaka, 2005, pp. 943‒960.
22. Hughes S., Reuter M.A., Baxter R., Kaye A. AUSMELT technology for lead and zinc processing. In: Proceedings of Lead and Zinc 2008, 25–29 February 2008, South African Institute of Mining and Metallurgy (SAIMM), South Africa, pp. 147–162.
23. Rusakov M.R. Depletion of slag melts by purging with reducing gases. Tsvetnye metally. 1985, no 3. pp. 40–42. (In Russ.).
24. Komkov A.A., Baranova N.V., Bystrov V.P. Investigation of reducing depletion of highly oxidized slags under bubbling conditions. Tsvetnye metally. 1994, no 12, pp. 26–30. (In Russ.).
25. Fomichev V.B., Knyazev M.V., Ryumin A.A., etc. Investigation of slags depletion by purging them with gas mixtures at different partial pressure of oxygen. Tsvetnye metally. 2002, no. 9, pp. 32–36. (In Russ.).
26. Komkov A.A., Kamkin R.I. Behavior of copper and impurities when purging copper-smelting slags with CO–CO2 gas mixture. Tsvetnye metally. 2011, no 6, pp. 26–31. (In Russ.).
27. Vusikhis A.S., Leont’ev L.I., Chentsov V.P., Kudinov D.Z., Selivanov E.N. Metallic phase forming in barbotage of multicomponent oxide melt by reduction gas. Report 1. Theoretical basis of the process. Izvestiya. Ferrous Metallurgy. 2016, vol. 59, no. 9, pp. 639-643. (In Russ.). https://doi.org/10.17073/0368-0797-2016-9-639-643
28. Vusikhis A.S., Dmitriev A.N., Leont’ev L.I., Shavrin S.V. Kinetics of metal oxides reduction from the melt by gas-reducing agent in bubbled layer. Materialovedenie, 2002, no. 10, pp. 30–34. (In Russ.).
29. Vatolin N.A., Moiseev G.K., Trusov B.G. Thermodynamic Modeling in High-Temperature Inorganic Systems. Moscow: Metallurgiya, 1994, 352 p. (In Russ.).
30. Boronenkov V., Zinigrad M., Leontiev L., PastukhoV.E., Shali- mov M., Shanchurov S. Phase Interaction in the Metal-Oxide Melts-Gas System. The Modeling of Structure, Properties and Processes. Heidelberg, Berlin: Springer-Verlag, 2012, 405 р. https://doi.org/10.1007/978-3-642-22377-8
31. Dmitriev A.N., Vusikhis A.S., Sitnikov V.A., Leontiev L.I., Kudinov D.Z. Thermodynamic modeling of iron oxide reduction by hydrogen from the B2O3 – CaO – FeO melt in bubbled layer. Israel Journal of Chemistry. 2007, vol. 47, no. 3–4, pp. 299–302. https://doi.org/10.1560/IJC.47.3-4.299
32. Vusikhis A.S., Leont’ev L.I., Kudinov D.Z., Selivanov E.N. Thermodynamic modeling of nickel and iron reduction from multicomponent silicate melt in bubbling process. Report 1. Reducing agent – a mixture of CO – CO2 . Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no 9, pp. 731–736. (In Russ.). https://doi.org/10.17073/0368-0797-2019-9-731-736
Review
For citations:
Vusikhis A.S., Leont’ev L.I., Selivanov E.N. Thermodynamic modeling of iron and zinc reduction from B2O3 ‒ CaO ‒ Fe2O3 ‒ ZnО melt by СО ‒ CO2 and H2 ‒ Н2О mixtures. Izvestiya. Ferrous Metallurgy. 2021;64(7):488-497. (In Russ.) https://doi.org/10.17073/0368-0797-2021-7-488-497