Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Nonparametric control algorithm for metal temperature mode on site BOF – CCM

https://doi.org/10.17073/0368-0797-2021-6-447-457

Abstract

A two-level control system for the temperature mode of smelting, out-of-furnace processing and preparation for casting of low-carbon steel G/ET is proposed in the conditions of BOF shop-2 of JSC “United West Siberian Metallurgical Combine”. Depending on the technological scheme, it is possible to design various control systems for the steelmaking complex with sequential, parallel and combined inclusion of individual operations and processes. The control system of a sequential group of objects is considered on the example of steel G/ET. The control system includes an external control loop that allows coordinated control of the shop departments by optimizing the mode of technological process conducting at the facility, taking into account the actual operation performed at the previous facility. The implemented nonparametric algorithm of dual control allows the decision-maker to perform joint operational adjustment of control actions for local control loops. The temperature mode of the melts of low-carbon steel G/ET is analyzed and it is revealed that the processing time of the steel ladle at each stage of the BOF – CCM technological route has a significant impact on the steel temperature mode. In accordance with this, the criteria for temperature control quality are formed. The results of computational experiment showed that the introduction of a control unit with a decision-maker contributes to the rational control of metal temperature mode in the BOF – CCM site, and as a result, obtaining a given chemical composition and temperature of steel within narrower limits. It allows one to eliminate deviations from the contact schedule of the main units, and to increase the number of melts in the series and the rate of continuous casting.

About the Authors

M. E. Kornet
Institute of Space and Information Technologies of SibFU
Russian Federation

Mariya Е. Kornet, Candidates for a degree of Cand. Sci. (Eng.) of the Chair of Information Systems

660041 Krasnoyarsk, Svobodnyi Ave., 79 



A. V. Raskina
Institute of Space and Information Technologies of SibFU
Russian Federation

Anastasiya V. Raskina, Cand. Sci. (Eng.), Assist. Prof. of the Chair of In formation Systems

660041 Krasnoyarsk, Svobodnyi Ave., 79



A. A. Korneeva
Institute of Space and Information Technologies of SibFU
Russian Federation

Anna A. Korneeva, Cand. Sci. (Eng.), Assist. Prof. of the Chair of Intelligent Control Systems

660041 Krasnoyarsk, Svobodnyi Ave., 79



References

1. Chaabet M., Dötsch E. Steelmaking based on inductive melting. Induction Technology. 2012, no. 1, pp. 49–58.

2. Aleksashin A.L., Schnaltzger I., Hollias G. Creation and growth of oxygen-converter steelmaking. Metallurgist. 2007, vol. 51, no. 1, pp. 60–65. https://doi.org/10.1007/s11015-007-0014-4

3. Głownia J. Metallurgy and Technology of Steel Castings. Bentham Science Publishers, 2017. 319 p. https://doi.org/10.2174/97816810857081170101

4. Golubtsov V.A., Shub L.G., Deryabin A.A., Usmanov R.G. Treating steel outside the furnace more efficiently. Metallurgist. 2006, vol.50, no. 11-12, pp. 634–637. https://doi.org/10.1007/s11015-006-0135-1

5. Quan G., Zhao L., Chen T., Wang Y., Mao Y., Lv W., Zhou J. Identification for the optimal working parameters of as-extruded 42CrMo high-strength steel from a large range of strain, strain rate and temperature. Materials Science and Engineering: A. 2012, vol. 538, pp.364–373. https://doi.org/10.1016/j.msea.2012.01.062

6. Yang W., Yang J., Shi Y., Yang Z., Gao F., Zhang R., Ye G. Effect of temperature on dephosphorization of hot metal in double slag converter steelmaking process by high temperature laboratorial experiments. Steel Research International. 2021, vol. 92, no. 3, article 2000438. https://doi.org/10.1002/srin.202000438

7. Kubat C., Taşkina H., Artirb R., Yilmazc A. Bofy-fuzzy logic control for the basic oxygen furnace (BOF). Robotics and Autonomous Systems. 2004, vol. 49, no. 3-4, pp. 193–205. https://doi.org/10.1016/j.robot.2004.09.007

8. Lyakhovets M.V., Ivushkin K.A., Myshlyaev L.P., ChernyavskiiS.V., L’vova E.I. The joint synthesis of the controlled object and control subsystem. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 12, pp.33–36. (In Russ.). https://doi.org/10.17073/0368-0797-2014-12-33-36

9. Spirin V.A., Savin A.V., Chistyakov V.V., etc. Control system of the unit of steelmaking ladles drying and heating. Sovremennye tekhnologii avtomatizatsii. 2000, no. 3, pp. 66–71. (In Russ.).

10. Bogushevs’kii V.S., Zubova K.M. Mathematical modeling of converter process with energy-saving technology. Tekhnologichni kompleksi. 2013, no. 2, pp. 32–38. (In Russ.).

11. Boiko F.K., Ptitsyna E.V. Analysis of control methods and devices in electrolysis and arc electrotechnological plants. Nauka i tekhnika Kazakhstana. 2006, no. 1, pp. 5–13. (In Russ.).

12. Jiayan Z., Weixin Y., Jiahong L. Study of oxygen lance position control strategy with self-adaptive fuzzy PID control. In: 2010 Int. Conf. on Electrical and Control Engineering, IEEE 2010, pp. 2051–2054. https://doi.org/10.1109/iCECE.2010.505

13. Bogushevskii V.S., Litvinov L.F., Ryumshin N.A., Sorokin V.V. Mathematical Models and Control Systems for Converter Smelting. Kiev: Kievskii institut avtomatiki, 1998, 304 p. (In Russ.).

14. Sinyakov R.V., Kharchenko A.V., Lichkonenko N.V. Optimization of engineering and control of oxygen converter smelting. Metalurgіya. 2018, no. 2, pp. 18–27. (In Russ.).

15. Jalkanen H., Holappa L. Converter steelmaking. In: Treatise on Process Metallurgy. Elsevier. 2014, vol. 3, pp. 223–270. https://doi.org/10.1016/B978-0-08-096988-6.00014-6

16. Laciak M., Kačur J., Flegner P., Terpák J., Durdán M., Tréfa G. The mathematical model for indirect measurement of temperature in the steel-making process. In: Proceedings of the 2020 21th Int. Carpathian Control Conference (ICCC), IEEE 2020, article 9257259. https://doi.org/10.1109/ICCC49264.2020.9257259

17. Kačur J., Laciak M., Flegner P., Terpák J., Durdán M., Tréfa G. Application of support vector regression for data-driven modeling of melt temperature and carbon content in LD converter. In: Proceedings of the 2019 20th Int. Carpathian Control Conference (ICCC), IEEE 2019, article 8765956. http://dx.doi.org/10.1109/CarpathianCC.2019.8765956

18. Penz F.M., Schenk J., Ammer R., Klösch G., Pastucha K., Reischl M. Diffusive steel scrap melting in carbon-saturated hot metal–phenomenological investigation at the solid–liquid interface. Materials. 2019, vol. 12, no. 8, article 1358. https://doi.org/10.3390/ma12081358

19. Han M., Zhao Y. Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine. Expert Systems with Applications. 2011, vol. 38, no. 12, pp. 14786–14798. https://doi.org/10.1016/j.eswa.2011.05.071

20. Sokolov B.M., Shepelyavyi A.I., Medvedev A.V. Adaptive control of steel converter smelting. Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mekhanika. Astronomiya. 2003, no. 2, pp. 58–65. (In Russ.).

21. Verevkin S.V. Research and application of production coordination algorithms (steelmaking complex case): Extended Abstract of Cand. Sci. Diss. Novokuznetsk: ITs SibSIU, 2003, 24 p. (In Russ.).

22. Yang X., Li J., Zhang M., Yan F., Duan D., Zhang J. A further evaluation of the coupling relationship between dephosphorization and desulfurization abilities or potentials for CaO-based slags: Influence of slag chemical composition. Metals. 2018, vol. 8, no. 12, article 1083. https://doi.org/10.3390/met8121083

23. Gulyga D.V., Sushchenko A.V. Modelling of metal temperature dynamics in the ladle while moving from converter to CCM. Stal'. 2004, no. 9, pp. 15–19. (In Russ.).

24. Medvedev A.V. Basics of Adaptive Systems Theory. Krasnoyarsk: SibSAU, 2015, 526 p. (In Russ.).

25. Medvedev A.V. Basics of Non-Parametric Systems Theory. Krasnoyarsk: izd. SibSAU im. Reshetneva, 2018, 732 p. (In Russ.).

26. Katkovnik V.Ya. Convergence of linear and nonlinear non-parametric “nuclear” estimates. Avtomatika i telemekhanika. 1983, no. 4, pp.108–120. (In Russ.).

27. Tsybakov A.B. On convergence of non-parametric robastic algorithms for functions approximation. Avtomatika i telemekhanika. 1983, no. 12, pp. 66–76. (In Russ.).

28. Kornet M.E. Raskina A.V., Korneeva A.A., Videnin S. A., Masich I.S. Non-parametric algorithms of identification and control of group of technological processes in low-carbon steel production. Journal of Physics: Conference Series. IOP Publishing. 2020, vol. 1679, no.4, article 042042. https://doi.org/10.1088/1742-6596/1679/4/042042


Review

For citations:


Kornet M.E., Raskina A.V., Korneeva A.A. Nonparametric control algorithm for metal temperature mode on site BOF – CCM. Izvestiya. Ferrous Metallurgy. 2021;64(6):447-457. (In Russ.) https://doi.org/10.17073/0368-0797-2021-6-447-457

Views: 507


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)