Diborides of transition metals: Properties, application and production. review. Part 2. Chromium and zirconium diborides
https://doi.org/10.17073/0368-0797-2021-6-395-412
Abstract
The second part of the review considers properties, application and methods for producing chromium and zirconium diborides. These diborides are oxygen-free refractory metal-like compounds. As a result, they are characterized by high values of thermal and electrical conductivity. Their hardness is relatively high. Chromium and zirconium diborides exhibit significant chemical resistance in aggressive environments. They have found application in modern technology because of these reasons. Chromium diboride is used as a sintering additive to improve the properties of ceramics based on boron carbide and titanium diboride. Zirconium diboride is a component of advanced ultra-high temperature ceramics (UHTC) ZrB2 –SiC used in supersonic aircrafts and in gas turbine assemblies. Ceramics B4C–CrB2 and B4C–ZrB2 have high-quality performance characteristics, in particular, increased crack resistance. The properties of refractory compounds depend on the content of impurities and dispersion. Therefore, to solve a specific problem associated with the use of refractory compounds, it is important to choose the method of their preparation correctly, to determine the admissible content of impurities in the starting components. This leads to the presence of different methods for the borides synthesis. The main methods for their preparation are: a) synthesis from elements; b) borothermal reduction of oxides; c) carbothermal reduction (reduction of mixtures of metal oxides and boron with carbon; d) metallothermal reduction of metal oxides and boron mixtures; e) boron-carbide reduction. Plasma-chemical synthesis (deposition from the vapor-gas phase) is also used to obtain diboride nanopowders. Each of these methods is described.
About the Authors
Yu. L. KrutskiiRussian Federation
Yurii L. Krutskii, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Chemistry and Chemical Technology”
630073 Novosibirsk, K. Marksa Ave., 20
T. S. Gudyma
Russian Federation
Tat’yana S. Gudyma, Postgraduate of the Chair “Chemistry and Chemical Technology”
630073 Novosibirsk, K. Marksa Ave., 20
K. D. Dyukova
Russian Federation
Kseniya D. Dyukova, Cand. Sci (Eng.), Engineer of Analytical Laboratory
630090 Novosibirsk, Kutateladze Str., 7/11
R. I. Kuz’min
Russian Federation
Ruslan I. Kuz’min, Postgraduate of the Chair “Material Science in Mechanical Engineering”
630073 Novosibirsk, K. Marksa Ave., 20
T. M. Krutskaya
Russian Federation
Tat’yana M. Krutskaya, Cand. Sci. (Chem.), Assist. Prof. of the Chair of Physics and Chemistry
630008 Novosibirsk, Leningradskaya Str., 113
References
1. Serebryakova T.I., Neronov V.A., Peshev P.D. High Temperature Borides. Moscow: Metallurgiya, Chelyabinskoe otdelenie, 1991, 368 p. (In Russ.).
2. Properties, Production and Application of Refractory Compounds. Reference book. Kosolapova T.Ya. ed. Moscow: Metallurgiya, 1986, 928 p. (In Russ.).
3. Kosolapova T.Ya. Chemical properties of refractory compounds. Zhurnal VKhO im. D.I. Mendeleyeva. 1979, vol. 24, no. 3, pp. 244–249. (In Russ.).
4. Oreshkin V.D., Svetlopolyanskii V.I., Serebryakova T.I. Study of the wear resistance of surfaces deposited with borides. Poroshkovaya metallurgiya. 1971, no. 3, pp. 78–82. (In Russ.).
5. Gorbunov A.E., Bryksin-Lyamin M.P. Refractory borides as the main components of powdered surfacing mixtures. Poroshkovaya metallurgiya. 1971, no. 4, pp. 91–93. (In Russ.).
6. Chernega S.M. Complex saturation of carbon steels with boron and chromium in an activated medium. Izvestiya. Ferrous Metallurgy. 1999, no. 11, pp. 58–60. (In Russ.).
7. Gorshkov B.N., Kudryavtsev Yu.P., Loskutov V.S., Neronov V.A., Alekseev V.V. Technological process of coating of some transition metals borides by plasma spraying. Poroshkovaya metallurgiya. 1980, no. 5, pp. 73–76. (In Russ.).
8. Obabkov N.V., Sorokin V.G., Guzanov B.N., Beketov A.R., Svistunov V.V., Shurygin V.S. Temperature-resistant wear-resisting coatings with chromium borides. In: High-Temperature Material Protection. Leningrad: Nauka, 1981, pp. 159–163. (In Russ.).
9. Jordan L.R., Betts A.J., Dahm K.L., Dearnley P.A., Wright G.A. Corrosion and passivation mechanism of chromium diboride coatings on stainless steel. Corrosion Science. 2005, vol. 47, no. 5, pp.1085–1096. https://doi.org/10.1016/j.corsci.2003.10.018
10. Dearnley P.A., Schellewald M., Dahm K.L. Characterisation and wear response of metal-boride coated WC–Co. Wear. 2005, vol. 259, no.7-12, pp. 861–869. https://doi.org/10.1016/j.wear.2005.01.031
11. Yamada S., Hirao K., Yamauchi Y., Kanzaki S. Mechanical and electrical properties of B4 C–CrB2 ceramics fabricated by liquid phase sintering. Ceramics International. 2003, vol. 29, no. 3, pp. 299–304. https://doi.org/10.1016/S0272-8842(02)00120-7
12. Königshofer R., Fürnsinn S., Steinkellner P., Lengauer W., Haas R., Rabitsch K., Scheerer M. Solid-state properties of hot-pressed TiB2 ceramics. International Journal of Refractory Metals and Hard Materials. 2005, vol. 23, no. 4-6, pp. 350–357. https://doi.org/10.1016/j.ijrmhm.2005.05.006
13. Murthy T.S.R.Ch., Sonber J.K., Subramanian C., Fotedar R.K., Gonal M.R., Suri A.K. Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2. International Journal of Refractory Metals and Hard Materials. 2009, vol. 27, no. 6, pp.976–984. https://doi.org/10.1016/j.ijrmhm.2009.06.004
14. Artamonov A.Ya., Tutakov O.V., Daich A.I. Study of the polishing ability of refractory compounds. Poroshkovaya metallurgiya. 1967, no. 2, pp. 29–35. (In Russ.).
15. Kiparisov S.S., Libenson G.A., Pankevich A.P. On production of low-porous sintered products from zirconium diboride. Tsvetnye metally. 1975, no. 1, pp. 66–67. (In Russ.).
16. Samsonov G.V., Panasyuk A.D., Borovikova M.S. Contact interaction of refractory compounds with liquid metals. III. Investigation of the process of wetting metal-like borides with liquid transition metals. Poroshkovaya metallurgiya. 1973, no. 5, pp. 61–67. (In Russ.).
17. Mroz C. Annual minerals review. Zirconium diboride. American Ceramic Society Bulletin. 1995, vol. 74, no. 6, pp. 164–165.
18. Kuzenkova M.A., Kislyi P.S., Goncharenko G.N. Interaction of liquid steel with refractory metals diborides. Poroshkovaya metallurgiya. 1971, no. 9, pp. 50–53. (In Russ.).
19. Fahrenholtz W.G., Hilmas G.E., Talmy I.G., Zaykoski J.A. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society. 2007, vol. 90, no. 5, pp. 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x
20. Sonber J.K., Suri A.K. Synthesis and consolidation of zirconium diboride: Review. Advances in Applied Ceramics. 2011, vol. 110, no.6, pp. 321–334. https://doi.org/10.1179/1743676111Y.0000000008
21. Monteverde F., Savino R., Fumo M.D.S. Dynamic oxidation of ultra-high temperature ZrB2SiC under high enthalpy supersonic flows. Corrosion Science. 2011, vol. 53, no. 3, pp. 922–929. https://doi.org/10.1016/j.corsci.2010.11.018
22. Patel M., Reddi J.J., Prasad V.V.B., Jayaram V. Strength of hotpressed ZrB2SiC composite after exposure to high temperatures (1000–1700°C). Journal of the European Ceramic Society. 2012, vol. 32, no. 16, pp. 4455–4467. https://doi.org/10.1016/j.jeurceramsoc.2012.06.025
23. Bird M.W., Aune R.P., Yu F., Becher P.F., White K.W. Creep behavior of a zirconium diboride–silicon carbide composite. Journal of the European Ceramic Society. 2013, vol. 33, no. 13-14, pp. 2407–2420. https://doi.org/10.1016/j.jeurceramsoc.2013.03.022
24. Zou X., Fu Q., Liu L., Li H., Wang Y., Yao H., He Z. ZrB2SiC coating to protect carbon/carbon composites against ablation. Surface and Coating Technology. 2013, vol. 226, pp. 17–21. https://doi.org/10.1016/j.surfcoat.2013.03.027
25. Gao D., Zhang Y., Xu C., Song Y., Shi X. Oxidation kinetics of hotpressed ZrB2SiC ceramic matrix composites. Ceramics International. 2013, vol. 39, no. 3, pp. 3113–3119. https://doi.org/10.1016/j.ceramint.2012.09.091
26. Krupa M.S., Kumar N.D., Kumar R.S., Chakravarthy P., Venkateswarlu K. Effect of zirconium diboride addition on the properties of silicon carbide composites. Ceramics International. 2013, vol. 39, no. 8, pp. 9567–9574. https://doi.org/10.1016/j.ceramint.2013.05.075
27. Neuman E.W., Hilmas G.E., Fahrenholtz W.G. Mechanical behavior of zirconium diboride-silicon carbide ceramics at elevated temperature in air. Journal of the European Ceramic Society. 2013, vol. 33, no. 15-16, pp. 2889–2899. https://doi.org/10.1016/j.jeurceramsoc.2013.05.003
28. Ortona A., Lagos M.A., Scocchi G., Barcena G. Spark plasma sintering of ZrB2SiC composites with in-situ reaction bonded silicon carbide. Ceramics International. 2014, vol. 40, no. 1, part A, pp.821–826. https://doi.org/10.1016/j.ceramint.2013.06.074
29. Podchernyaeva I.A., Panasyuk A.D., Panashenko V.M., Grigor’evO.N., Dukhota A.I., Zhiginas V.V. Abrasive wear of ZrB2-containing spark-deposited and combined coatings on titanium alloy.II. Nonfixed-abrasive wear of ZrB2-containing coatings. Powder Metallurgy and Metal Ceramics. 2009, vol. 48, no. 7-8, pp. 435–440. (In Russ.). http://doi.org/10.1007/s11106-009-9148-1
30. Ordan’yan S.S., Dmitriev A.I., Bizhev K.T., Stepanenko E.K. Interaction in the B4 C–ZrB2 system. Poroshkovaya metallurgiya. 1988, no. 1, pp. 41–43. (In Russ.).
31. Kovalev A.V., Dudnik E.M., Grigor’ev O.N., Shaposhnikova T.I., Martsynyuk E.S. Directionally crystallized eutectic in the B4 C–ZrB2 system. Poroshkovaya metallurgiya. 2000, no. 1-2, pp. 71–75. (In Russ.).
32. Zou J., Huang S.-G., Vanmeensel K., Zhang G.-J., Vleugels J., Van der Biest O. Spark plasma sintering of superhard B4 C–ZrB2 ceramics by carbide boronizing. Journal of the American Ceramic Society. 2013, vol. 96, no. 4, pp. 1055–1059. https://doi.org/10.1111/jace.12284
33. Mestvirishvili Z., Bairamashvili I., Kvatchadze V., Rekhviashvili N. Thermal and mechanical properties of B4 C–ZrB2 ceramic composite. Journal of Materials Science and Engineering B. 2015, vol. 5, no. 9-10, pp. 385–393. https://doi.org/10.17265/2161-6221/2015.9-10.007
34. Shcherbakov V.A., Gryadunov A.N., Alymov M.I. Synthesis and characterictics of the B4 C–ZrB2 composite. Letters on Materials. 2017, vol. 7, no. 4, pp. 398–401. https://doi.org/10.22226/2410-3535-2017-4-398-401
35. Gurin V.N. Methods for the synthesis of refractory compounds and prospects for their application to create new materials. Zhurnal VKhO im. D.I. Mendeleyeva. 1979, vol. 24, no. 3, pp. 212–222. (In Russ.).
36. Merzhanov A.G., Borovinskaya I.P. Self-propagating high-temperature synthesis in chemistry and technology of refractory compounds. Zhurnal VKhO im. D.I. Mendeleyeva. 1979, vol. 24, no. 3, pp. 223–227. (In Russ.).
37. Properties of Elements. Part 1: Physical Properties. Reference Book. Samsonov G.V. ed. Moscow: Metallurgiya, 1976, 600 p. (In Russ.).
38. Samsonov G.V., Perminov V.P. Magnesiothermy. Moscow: Metallurgiya, 1971, 176 p. (In Russ.).
39. Physicochemical Properties of Oxides. Reference book. SamsonovG.V. ed. Kiev: Naukova dumka, 1978, 654 p. (In Russ.).
40. Kieffer R., Benesovsky F. Hartmetalle. Vienna: Springer-Verlag, 1965. (In Germ.). (Russ. ed.: Kieffer R., Benesovsky F. Tverdye materialy. Moscow: Metallurgiya, 1968, 384 p.) https://doi.org/10.1007/978-3-7091-8127-0
41. Kislyi P.S., Kuzenkova M.A., Bodnaruk N.I., Grabchuk B.L. Boron Carbide. Kiev: Naukova Dumka, 1988, 216 p. (In Russ.).
42. Morris M.A., Morris D.G. Ball-milling of elemental powders-compound formation and/or amorphization. Journal of Materials Science. 1991, vol. 26, pp. 4687–4696. https://doi.org/10.1007/BF00612407
43. Iizumi K., Kudaka K., Maezawa D., Sasaki T. Mechanochemical synthesis of chromium borides. Journal of the Ceramic Society of Japan. 1999, vol. 107, no. 1245, pp. 491–493. https://doi.org/10.2109/jcersj.107.491
44. Makarenko G.N., Krushinskaya L.A., Timofeeva I.I., MatseraV.E., Vasil’kovskaya M.A., Uvarova I.V. Formation of diborides of groups IV–VI transition metals during mechanochemical synthesis. Powder Metallurgy and Metal Ceramics. 2015, vol. 53, no. 9-10, pp.514–521. (In Russ.). http://doi/org/10.1007/s11106-015-9645-3
45. Borovinskaya I.P., Novikov N.P. Synthesis of borides from oxides in self-propagating mode. In: Combustion Processes in Chemical Technology and Metallurgy. Chernogolovka: Department of the Institute of Chemical Physics, 1975, рр. 131–136. (In Russ.).
46. Yeh C.L., Wang H.J. Preparation of borides in Nb–B and Cr–B systems by combustion synthesis involving borothermic reduction of Nb2O5 and Cr2O3. Journal of Alloys and Compounds. 2010, vol.490, no. 1-2, pp. 366–371. https://doi.org/10.1016/j.jallcom.2009.10.007
47. Kumar M.B., Kumar S., Ganguli A.K. Surface decoration through electrostatic interaction leading to enhanced reactivity: Low temperature synthesis of nanostructured chromium borides (CrB and CrB2 ). Journal of Solid State Chemistry. 2013, vol. 200, pp.117–122. https://doi.org/10.1016/j.jssc.2013.01.005
48. Liu Z., Wei Y., Meng X., Ran S. Synthesis of CrB2 powders at 800°C under ambient pressure. Ceramics International. 2017, vol.43, no.1, part B, pp. 1628–1631. https://doi.org/10.1016/j.ceramint.2016.10.108
49. Gorbunov A.E. Carbon-thermal method for producing chromium, molybdenum and zirconium borides. Poroshkovaya metallurgiya. 1966, no. 11, pp. 52–56. (In Russ.).
50. Markovskii L.Ya., Vekshina N.V., Bezruk E.T., Sukhareva G.E., Voevodskaya T.K. Magnesium-thermal method for producing metal borides. Poroshkovaya metallurgiya. 1969, no. 5, pp. 13–18. (In Russ.).
51. Torabi O., Golabgir M.H., Tajizadegan H. An investigation on the formation mechanism of nano CrB2 powder in the Mg–B2O3Cr2O3 system. International Journal of Refractory Metals and Hard Materials. 2015, vol. 51, pp. 50–55. http://dx.doi.org/10.1016/j.ijrmhm.2015.02.015
52. Kartvelishvili Yu.M., Mchedlishvili D.I., Khocholava Z.D. On obtaining chromium borides. In: High-Temperature Borides and Silicides. Kiev: Naukova Dumka, 1978, pp. 56–59. (In Russ.).
53. Rao L., Gillan E.G., Kaner R.B. Rapid synthesis of transition-metal borides by solid-state metathesis. Journal of Materials Research. 1995, vol. 10, no. 2, pp. 353–361. https://doi.org/10.1557/JMR.1995.0353
54. Kuznetsov N.T., Golovanova A.I., Kedrova N.S., Mal`tseva N.N., Shevchenko Y.N. Thermal reactions of alkaline metal borohydrides: synthesis of borides. Journal of the Less-Common Metals. 1986, vol. 117, no. 1-2, pp. 41–44. https://doi.org/10.1016/0022-5088(86)90009-3
55. Karasev A.I. Obtaining powders of technical borides of titanium, zirconium, chromium and tungsten by the borocarbide method. Poroshkovaya metallurgiya. 1973, no. 10, pp. 1–5. (In Russ.).
56. GOST 5744 85. Materials grinding from boron carbide. Technical requirements. Moscow: Izdatel’stvo standartov, 1998, 12 p. (In Russ.).
57. Sonber J.K., Murthy T.S.R.Ch., Subramanian C., Kumar S., FotedarR.K., Suri A.K., Investigation on synthesis, pressureless sintering and hot pressing of chromium diboride. International Journal of Refractory Metals and Hard Materials. 2009, vol. 27, no. 5, pp.912–918. https://doi.org/10.1016/j.ijrmhm.2009.05.008
58. Krutskii Yu.L., Dyukova K.D, Bannov A.G., Sokolov V.V., Pichugin A.Yu., Maksimovskii E.A., Ukhina A.V., Krutskaya T.M., PopovM.V., Netskina O.V. Synthesis of finely dispersed chromium diboride powder using carbon nanofibre. Perspektivnye materialy. 2015, no. 3, pp. 55–61. (In Russ.).
59. Krutskii Yu.L., Dyukova K.D., Kuz’min R.I., Netskina O.V., IorkhA.E. Synthesis of finely dispersed chromium diboride from nanofibrous carbon. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 10, pp. 800–806. (In Russ.). https://doi.org/10.17073/0368-0797-2018-10-800-806
60. Kuvshinov G.G., Mogilnykh Yu.L., Kuvshinov D.G., YermakovD.Yu., Yermakova M.A., Salanov A.N., Rudina N.A. Mechanism of porous filamentous carbon granule formation on catalytic hydrocarbon decomposition. Carbon. 1999, vol. 37, pp. 1239–1246. http://doi.org/10.1016/S0008-6223(98)00320-0
61. Krutskii Yu.L., Bannov A.G., Sokolov V.V., Dyukova K.D., Shinkarev V.V., Ukhina A.V., Maksimovskii E.A., Pichugin A.Yu., Solov’ev E.A., Krutskaya T.M., Kuvshinov G.G. Synthesis of highly dispersed boron carbide from nanofibrous carbon. Nanotechnologies in Russia. 2013, vol. 8, no. 3-4, pp. 191–198. https://doi.org/10.1134/S1995078013020109
62. Krutskii Yu.L., Nepochatov Yu.K., Pel’ A.N., Skovorodin I.N., Dyukova K.D., Krutskaya T.M., Kuchumova I.D., Matts O.E., TyurinA.G., Emurlaeva Yu.Yu., Podryabinkin S.I. Synthesis of polydisperse boron carbide and synthesis of a ceramic on its basis. Russian Journal of Applied Chemistry. 2019, vol. 92, no. 6, pp. 750–758. https://doi.org/10.1134/S1070427219060041
63. Blott S.J., Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms. 2001, vol. 26, no. 11, pp. 1237–1248. https://doi.org/10.1002/esp.261
64. Bolgar A.S., Turchanin A.G., Fesenko V.V. Thermodynamic Properties of Carbides. Kiev: Naukova Dumka, 1973, 271 p. (In Russ.).
65. Berger L.-M., Stolle S., Gruner W., Wetzig K. Investigation of the carbothermal reduction process of chromium oxide by micro and lab-scale methods. International Journal of Refractory Metals and Hard Materials. 2001, vol. 19, no. 2, pp. 109–121. https://doi.org/10.1016/S0263-4368(01)00003-8
66. West A.R. Solid State Chemistry and its Applications. Chichester: John Wiley & Sons, 1984. (Russ. ed.: West A. Khimiya tverdogo tela. Teoriya i prilozheniya. Moscow: Mir, 1988, 558 p.)
67. Saburov V.P., Cherepanov A.N., Zhukov M.F., Galevskii G.V., Krushenko G.G., Borisov V.T. Plasma-Chemical Synthesis of Ultrafine Powders and their Use for Metals and Alloys Modification. Novosibirsk: Nauka, 1995, 344 p. (In Russ.)
68. Nozdrin I.V., Terent’eva M.A., Rudneva V.V. Thermodynamic analysis of plasma synthesis of chromium diboride. Izvestiya. Ferrous Metallurgy. 2012. vol. 55, no. 10, pp. 7–11. (In Russ.). https://doi.org/10.17073/0368-0797-2012-10-7-11
69. Popovich A.A., Reva V.P., Vasilenko V.N., Popovich T.A., BelousO.A. Mechanochemical method for producing powders of refractory compounds (Review). Poroshkovaya metallurgiya. 1993, no. 2, pp. 37–43. (In Russ.).
70. Çamurlu H.E., Maglia F. Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. Journal of the European Ceramic Society. 2009, vol. 29, pp. 1501–1506. https://doi.org/10.1016/j.jeurceramsoc.2008.09.006
71. Wu W.-W., Zhang, G.-J., Sakka Y. Nanocrystalline ZrB2 powders prepared by mechanical alloying. Journal of Asian Ceramic Societies. 2013, vol. 1, no. 3, pp. 304–307. https://doi.org/10.1016/j.jascer.2013.08.002
72. Guo S., Hu C., Kagava Y. Mechanochemical processing of nanocrystalline zirconium diboride powder. Journal of the American Ceramic Society. 2011, vol. 94, no. 11, pp. 3643–3647. https://doi.org/10.1111/j.1551-2916.2011.04825.x
73. Burlakova A.G., Kravchenko S.E., Domashnev I.A., VinokurovA.A., Nadkhina S.E., Volkova L.S., Shilkin S.P. Special features of preparation of nanosized zirconium diboride powders of various dispersity. Russian Journal of General Chemistry. 2017, vol. 87, no.5, pp.906–911.
74. Chen B., Yang L., Heng H., Chen J., Zhang L., Xu L., Qian Y., YangJ. Additive-assisted synthesis of boride, carbide and nitride micro/nanocrystals. Journal of Solid State Chemistry. 2012, vol.194, pp. 219–224. https://doi.org/10.1016/j.jssc.2012.05.032
75. Millet P., Hwang T. Preparation of TiB2 and ZrB2. Influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia. Journal of Materials Science. 1996, vol. 31, pp.351–355. https://doi.org/10.1007/BF01139151
76. Ran S., Van der Biest O., Vleugels J. ZrB2 powders synthesis by borothermal reduction. Journal of the American Ceramic Society. 2010, vol. 93, no. 6, pp. 1586–1590. https://doi.org/10.1111/j.1551-2916.2010.03747.x
77. Guo W.-M., Zhang G-J. New borothermal reduction route to syhthesize submicrometric ZrB2 powders with low oxygen content. Journal of the American Ceramic Society. 2011, vol. 94, no. 11, pp.3702–3705. https://doi.org/10.1111/j.1551-2916.2011.04869.x
78. Zoli L., Costa A.L., Sciti D. Synthesis of nanosized zirconium diboride powder via oxide-borohydride solid state reaction. Scripta Materialia. 2015, vol. 109, pp. 100–103. https://doi.org/10.1016/j.scriptamat.2015.07.029
79. Karasev A.I. Investigation of the conditions for obtaining technical zirconium diboride by carbon thermal reduction of mixtures of zirconium and boron oxides. Poroshkovaya metallurgiya. 1973, no. 11, pp. 80–84. (In Russ.).
80. Jung E.-Y., Kim J.-H., Jung S.-H., Choi S.-C. Synthesis of ZrB2 powder by carbothermal and borothermal reduction. Journal of Alloys and Compounds. 2012, vol. 538, pp. 164–168. https://doi.org/10.1016/j.jallcom.2012.05.076
81. Zhang Y., Li R., Jiang Y., Zhao B., Duan H., Li J., Feng Z. Morphology evolution of ZrB2 nanoparticles synthesized by sol-gel method. Journal of Solid State Chemistry. 2011, vol. 184, no. 8, pp. 2047–2052. https://doi.org/10.1016/j.jssc.2011.05.040
82. Cheng G. An inorganic-organic hybrid precursor strategy for the synthesis of zirconium diboride powders. International Journal of Refractory Metals and Hard Materials. 2013, vol. 36, pp. 149–153. https://doi.org/10.1016/j.ijrmhm.2012.08.008
83. Gocmez H., Tuncer M., Yeniceri Y.S. Low temperature synthesis and pressureless sintering of nanocrystalline zirconium diboride powders. Ceramics International. 2014, vol. 40, part A, pp. 12117–12122. https://doi.org/10.1016/j.ceramint.2014.04.051
84. Zhang H., Dong Z., Huang Q., Li Y., Zhang X., Yuan G., Li X. Preparation of zirconium diboride powders by co-pyrolysis of a zirconium-containing organic precursor and polyborazine using a so-lution based method. Ceramics International. 2014, vol. 40, no. 9, partB, pp. 15207–15214. https://doi.org/10.1016/j.ceramint.2014.07.002
85. Ji H., Yang M., Li M., Ji G., Fan H., Sun X. Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol-gel processing route. Advanced Powder Technology. 2014, vol. 25, no. 3, pp. 910–915. https://doi.org/10.1016/j.apt.2014.01.005
86. Patra N., Nasiri N.A., Jayaseelan D.D., Lee W.E. Synthesis, characterization and use of synthesized fine zirconium diboride as an additive for densification of commercial zirconium diboride powder. Ceramics International. 2016, vol. 42, no. 8, pp. 9565– 9570. https://doi.org/10.1016/j.ceramint.2016.03.037
87. Khanra A.K., Pathak L.C., Mishra S.K., Godkhindi M.M. Self-propagating-high-temperature synthesis (SHS) of ultrafine ZrB2 powder. Journal of Materials Science Letters. 2003, vol. 22, pp. 1189–1191. https://doi.org/10.1023/A:1025336230885
88. Setoudeh N., Welham N.J. Formation of zirconium diboride (ZrB2) by room temperature mechanochemical reaction between ZrO2 , B2O3 and Mg. Journal of Allows and Compounds. 2006, vol. 420, no. 1-2, pp. 225–228. https://doi.org/10.1016/j.jallcom.2005.07.083
89. Khanra A.K. Reaction chemistry during self-propagating high-temperature synthesis (SHS) of H3 BO3ZrO2Mg system. Materials Research Bulletin. 2007, vol. 42, no. 12, pp. 2224–2229. https://doi.org/10.1016/j.materresbull.2007.01.016
90. Akgün B., Çamurlu H.E., Topkaya Y., Sevinç N. Mechanochemical and volume combustion synthesis of ZrB2 . International Journal of Refractory Metals and Hard Materials. 2011, vol. 29, no. 5, pp.601–607. https://doi.org/10.1016/j.ijrmhm.2011.04.005
91. Jalaly M., Bafghi M.Sh., Tamizifar M., Gotor E.J. An investigation on the formation mechanism of nano ZrB2 powder by a magnesiothermic reaction. Journal of Allows and Compounds. 2014, vol. 588, pp. 36–41. https://doi.org/10.1016/j.jallcom.2013.11.050
92. Khanra A.K., Pathak L.C., Godkhindi M.M. Double SHS of ZrB2 powder. Journal of Materials Processing Technology. 2008, vol.202, no.1-3, pp. 386–390. https://doi.org/10.1016/j.jmatprotec.2007.09.007
93. Cordova S., Shafirovich E. Toward a better conversion in magnesiothermic SHS of zirconium diboride. Journal of Materials Science. 2018, vol. 53, pp. 13600–13606. https://doi.org/10.1007/s10853-018-2460-8
94. Fang Z., Fu Z., Wang H., Wang W., Zhang Q. Preparation of ZrB2 ceramics by self-propagating high-temperature synthesis and hot pressing sintering. Journal of Wuhan University of Technology Materials Science Edition. 2005, vol. 20, no. 4, pp. 87–89. https://doi.org/10.1007/BF02841291
95. Velashjerdi M., Sarpoolaky H., Mirhabibi A. Novel synthesis of ZrB2 powder by low temperature direct molten salt reaction. Ceramics International. 2015, vol. 41, no. 10, part A, pp. 12554–12559. https://doi.org/10.1016/j.ceramint.2015.06.068
96. Guo W.-M., Zhang G.-J. Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. Journal of the American Ceramic Society. 2009, vol. 92, no. 1, pp. 264–267. https://doi.org/10.1111/j.1551-2916.2008.02836.x
97. Sonber J.K., Murthi T.S.R.Ch., Subramanian C., Kumar S., FotedarR.K., Suri A.K. Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2 . International Journal of Refractory Metals and Hard Materials. 2011, vol. 29, no.1, pp.21–30. https://doi.org/10.1016/J.IJRMHM.2010.06.007
98. Qiu H.-Y., Guo W.-M., Zou J., Zhang G.-J. ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: The effect of carbon source and reaction atmosphere. Powder Technology. 2012, vol. 217, pp.462–466. https://doi.org/10.1016/j.powtec.2011.11.002
99. Krutskii Yu.L., Maksimovskii E.A., Popov M.V., Netskina O.V., Krutskaya T.M., Cherkasova N.Yu., Kvashina T.S., Drobyaz E.A. Synthesis of highly dispersed zirconium diboride for fabrication of special-purpose ceramic. Russian Journal of Applied Chemistry. 2017, vol. 90, no. 10, pp. 1579–1585. https://doi.org/10.1134/S1070427217100044
100. Bai L., Jin H., Lu C., Yuan F., Huang S., Li J. RF thermal plasmaassisted metallothermic synthesis of ultrafine ZrB2 powders. Ceramics International. 2015, vol. 41, no. 6, pp. 7312–7317. https://doi.org/10.1016/j.ceramint.2015.02.024
Review
For citations:
Krutskii Yu.L., Gudyma T.S., Dyukova K.D., Kuz’min R.I., Krutskaya T.M. Diborides of transition metals: Properties, application and production. review. Part 2. Chromium and zirconium diborides. Izvestiya. Ferrous Metallurgy. 2021;64(6):395-412. (In Russ.) https://doi.org/10.17073/0368-0797-2021-6-395-412