Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Mechanochemical technology of iron extraction from enrichment tailings

https://doi.org/10.17073/0368-0797-2021-4-282-291

Abstract

The article describes the results of studies on ore dressing waste processing at the enterprises of the Kursk Magnetic Anomaly with production of metals and building materials. About 1.8 billion tons of tailings were stored there. Significant feature of deposits formation is division of tailings by size and specific gravity in water stream, since tailings are transported from the enrichment plant to the tailing dams by hydrotransport. Characteristics of the tailings from wet magnetic research method was applied, including system analysis and scientific generalization, data processing using methods of statistics, probability theory and mathematical modeling. The authors have systematized the results of tailings leaching of following types: agitation leaching in percolator, agitation leaching after activation in disintegrator in the dry state and reagent leaching in disintegrator. Regression analysis of experimental data have been carried out, on the basis of which graphs of dependence of iron extraction on the values of variable process factors were constructed. The used enrichment technologies are limited by extraction limit, which results in processing tailings. The use of these tailings by traditional technologies is not economically efficient, and upgrading of enrichment processes is advisable using hydrometallurgical and chemical technologies. Promising direction in metals extraction from mining waste is combination of processing technologies based on possibilities of both chemical enrichment and activation in disintegrator. It was determined that mechanochemical activation of tailings in disintegrator simultaneously with leaching can significantly increase extraction while the processing time is reduced hundredfold. Recommended technology may be in demand at mining enterprises with the prospect of transition to underground mining.

About the Authors

V. I. Golik
North Caucasian Institute of Mining and Metallurgy (State Technological University)
Russian Federation

Vladimir I. Golik, Dr. Sci. (Eng.), Prof. of the Chair of Mining Engineering

44 Nikolaeva Str., Vladikavkaz, Republic of North Ossetia – Alania 362021



Yu. V. Dmitrak
North Caucasian Institute of Mining and Metallurgy (State Technological University)
Russian Federation

Yurii V. Dmitrak, Dr. Sci. (Eng.), Prof., Rector

44 Nikolaeva Str., Vladikavkaz, Republic of North Ossetia – Alania 362021



Yu. I. Razorenov
Platov South-Russian State Polytechnic University
Russian Federation

Yurii V. Razorenov, Dr. Sci. (Eng.), Prof., Rector

132 Prosveshcheniya Str., Novocherkassk, Rostov Region 346428



S. A. Maslennikov
Institute of Service and Entrepreneurship (branch) of the Don State Technical University
Russian Federation

Stanislav A. Maslennikov, Cand. Sci. (Eng.), Assist. Prof., Head of the Chair of Construction and Technosphere Safety

147 Shevchenko Str., Shakhty, Rostov Region 346500



V. I. Lyashenko
Ukrainian Research and Design Institute of Industrial Technology
Ukraine

Vasilii I. Lyashenko, Cand. Sci. (Eng.), Senior Researcher, Head of Research Department

37 Svobody Blvd., Zhovti Vody, Dnipropetrovsk Region 52204



References

1. Golik V.I., Komashchenko V.I. Ferruginous quartzite processing waste as a source of additional metal recovery and backfilling. Gornyi Zhurnal. 2017, no. 3, pp. 43–47. (In Russ.). http://doi.org/10.17580/gzh.2017.03.08

2. Golik V.I., Komashchenko V.I., Stradanchenko S.G., Maslennikov S.A. Increasing completeness of subsoil use through deep utilization of coal enrichment waste. Gornyi Zhurnal. 2012, no. 9, pp. 91–95. (In Russ.).

3. Golik V.I., Razorenov Yu.I., Stradanchenko S.G., Khasheva Z.M. Principles and economic efficiency of ore mining technology combination. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2015, vol. 326, no. 7, pp. 6–14. (In Russ.).

4. Komashchenko V.I. Ecological and economic feasibility of mining wastes utilization for their processing. Izvestiya Tul. GU. Nauki o Zemle. 2015, no. 4, pр. 23–30. (In Rus.).

5. Kaplunov D.R., Radchenko D.N. Design philosophy and choice of technologies for sustainable development of underground mines. Gornyi Zhurnal. 2017, no. 11, pp. 121–125. (In Russ.). http://doi.org/10.17580/gzh.2017.11.10

6. Epov M.I., Yurkevich N.V., Bortnikova S.B., Karin Yu.G., Saeva O.P. Analysis of mine waste by geocheimical and geophysical methods (a case study of the mine tailing dump of the Salair ore-processing plant). Russian Geology and Geophysics. 2017, vol. 58, no. 12, pp. 1543–1552. http://doi.org/10.1016/j.rgg.2017.11.014

7. Krupskaya L.T., Golubev D.A., Rastanina N.K., Filatova M.Yu. Reclamation of tailings storage surface at a closed mine in the Primorsky Krai by bio remediation. Mining Informational and Analytical Bulletin. 2019, vol. 2019, no. 9, pp. 138–148. (In Russ.). http://doi.org/10.25018/0236-1493-2019-09-0-138-148

8. Volkov E.P., Anushenkov A.N. Developing the technology of mine stowing with processing tailings based hardening blends. Izvestiya vuzov. Gornyi zhurnal. 2019, no. 7, pp. 5–13. (In Russ.).http://doi.org/10.21440/0536-1028-2019-7-5-13

9. Lyashenko V.I., Golik V.I., Dyatchin V.Z. Storage of tailings in the form of a hardened mass in underground mined-out spaces and tailings facilities. Obogashchenie rud. 2020, vol. 2020, no. 1, pp. 41–47. (In Russ.). http://doi.org/10.17580/or.2020.01.08

10. Lyashenko V.I., Golik V.I., Dyatchin V.Z. Increasing environmental safety by reducing technogenic load in mining regions. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 7, pp. 529–538. (In Russ.). http://doi.org/10.17073/0368-0797-2020-7-529-538

11. Gavrishev S.E., Kornilov S.N., Pytalev I.A., Gaponova I.V. Enhancing mine production efficiency through waste management. Gornyi zhurnal. 2017, no. 12, pp. 46–51. (In Russ.). http://doi.org/10.17580/gzh.2017.12.09

12. Kayri M. Predictive abilities of Bayesian regularization and Levenberg – Marquardt algorithms in artificial neural networks: A comparative empirical study on social data // Mathematical and Computational Applications. 2016. Vol. 21. No. 2. Article 21020020. http://doi.org/10.3390/mca21020020

13. Modaihsh A.S., Mahjoub M.O., Nadeem M.E.A., Ghoneim A.M., Al-Barakah F.N. The air quality, characterization of polycyclic aromatic hydrocarbon, organic carbon, and diurnal variation of particulate matter over Riyadh City // Journal of Environmental Protection. 2016. No. 7. P. 1198–1209. http://doi.org/10.4236/jep.2016.79107

14. Ke X., Zhou X., Wang X., Wang T., Hou H., Zhou M. Effect of tailings fineness on the pore structure development of cemented paste backfill // Construction and Building Materials. 2016. Vol. 126. Р. 345–350. http://doi.org/10.1016/j.conbuildmat.2016.09.052

15. Yuan Y., Bolan N., Prévoteau A., Vithanage M., Biswas J.K., Ok Y.S., Wang H. Applications of biochar in redox-mediated reactions // Bioresource Technology. 2017. Vol. 246. Р. 271–281. http://doi.org/10.1016/j.biortech.2017.06.154

16. Beiyuan J., Awad Y.M., Beckers F., Tsang D.C., Ok Y.S., Rinklebe J. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions // Chemosphere. 2017. Vol. 178. P. 110–118. http://doi.org/10.1016/j.chemosphere.2017.03.022

17. Deng D.Q., Liu L., Yao Z.L., Song K.I., Lao D.Z. A practice of ultrafine tailings disposal as filling material in a gold mine // Journal of Environmental Management. 2017. Vol. 196. P. 100–109. http://doi.org/10.1016/j.jenvman.2017.02.056

18. Vrancken C., Longhurst P.J., Wagland S.T. Critical review of realtime methods for solid waste characterisation: Informing material recovery and fuel production // Waste Management. 2017. Vol. 61. P. 40–57. http://doi.org/10.1016/j.wasman.2017.01.019

19. Cheng Y., Jiang H., Zhang X., Cui J., Song C., Li X. Effects of coal rank on physicochemical properties of coal and on methane adsorption // International Journal of Coal Science and Technology. 2017. Vol. 4. No. 2. P. 129–146. http://doi.org/10.1007/s40789-017-0161-6

20. Paul A., Murthy V.M.S.R., Prakash A.K. Estimation of rock load in development workings of underground coal mines. A modified RMR approach // Current Science. 2018. Vol. 114. No. 10. P. 2167–2174. http://doi/org/10.18520/cs/v114/i10/2167-2174

21. Burdzieva O.G., Zaalishvili V.B., Beriev O.G., Kanukov A.S., Maisuradze M.V. Mining impact on environment on the North Ossetian territory // International Journal of Geomate. 2016. Vol. 10. No. 1. Р. 1693–1697.

22. Chen T., Lei C., Yan B., Xiao X. Metal recovery from the copper sulfide tailing with leaching and fractional precipitation technology // Hydrometallurgy. 2014. Vol. 147. Р. 178–182. http://doi.org/10.1016/j.hydromet.2014.05.018

23. De Oliveira D.M., Sobral L.G.S., Olson G.J., Olson S.B. Acid leaching of a copper ore by sulphur-oxidizing microorganisms // Hydrometallurgy. 2014. Vol. 147. P. 223–227. http://doi.org/10.1016/j.hydromet.2014.05.019

24. Ghorbani Y., Franzidis J.-P., Petersen J. Heap leaching technology – Current state, innovations, and future directions: A review // Mineral Processing and Extractive Metallurgy Review. 2016. Vol. 37. No. 2. P. 73–119. http://doi.org/10.1080/08827508.2015.1115990

25. Mwase J.M., Petersen J., Eksteen J.J. A conceptual flowsheet for heap leaching of platinum group metals (PGMs) from a low-grade ore concentrate // Hydrometallurgy. 2012. Vol. 111-112. P. 129–135. http://doi.org/10.1016/j.hydromet.2011.11.012

26. Sinclair L., Thompson J. In situ leaching of copper: Challenges and future prospects // Hydrometallurgy. 2015. Vol. 157. Р. 306–324. http://doi.org/10.1016/j.hydromet.2015.08.022

27. Vrancken C., Longhurst P.J., Wagland S.T. Critical review of realtime methods for solid waste characterisation: Informing material recovery and fuel production // Waste Management. 2017. Vol. 61. P. 40–57. http://doi.org/10.1016/j.wasman.2017.01.019

28. Wang G., Li R., Carranza E.J.M., Yang F. 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China // Ore Geology Reviews. 2015. Vol. 71. P. 592–610. http://doi.org/10.1016/j.oregeorev.2015.03.002

29. Lyashenko V., Khomenko O., Topolnij F., Helevera O. Substantiation of technologies and technical means for disposal of mining and metallurgical waste in mines // Technology Audit and Production Reserves. 2020. Vol. 3. No. 3 (53). P. 4–11. http://doi.org/10.15587/2706-5448.2020.200897

30. Stankevich S.A., Dudar T.V., Svidenyuk M.O. Stagnation of bagatoch radar interferometry for detecting the change of the earth’s surface for the territory of uranium production in Ukraine. Ecological Safety. 2019, vol. 28, no. 2, pp. 18–23. (In Ukr.). http://doi.org/10.30929/2073-5057.2019.2.18-23


Review

For citations:


Golik V.I., Dmitrak Yu.V., Razorenov Yu.I., Maslennikov S.A., Lyashenko V.I. Mechanochemical technology of iron extraction from enrichment tailings. Izvestiya. Ferrous Metallurgy. 2021;64(4):282-291. (In Russ.) https://doi.org/10.17073/0368-0797-2021-4-282-291

Views: 408


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)