Preview

Izvestiya. Ferrous Metallurgy

Advanced search

High-entropy alloys: Structure, mechanical properties, deformation mechanisms and application

https://doi.org/10.17073/0368-0797-2021-4-249-258

Abstract

The article considers a brief review of the foreign publications on the study of the structure, phase composition and properties of five-component high-entropy alloys (HEAs) in different structural states in a wide temperature range over the past two decades. HEAs attract the attention of scientists with their unique and unusual properties. The difficulties of comparative analysis and generalization of data are noted due to different methods of obtaining HEAs, modes of mechanical tests for uniaxial compression and tension, sizes and shapes of the samples, types of thermal treatments, and phase composition (bcc and fcc crystal lattices). It is noted that the HEA with a bcc lattice has mainly high strength and low plasticity, and the HEA  with a fcc lattice has low strength and increased plasticity. A significant increase in the properties of the FeMnCoCrNi HEA with a fcc lattice can be achieved by alloying with boron and optimizing the parameters of thermal mechanical treatment at alloying with carbon in the amount of 1 % (at.). The deformation curves analyzed in the temperature range –196 ÷ 800 °C indicate an increase in the yield strength with a decrease in the grain size from 150 to 5 microns. As the temperature decreases, the yield strength and elongation increase. The effect of deformation rate on the mechanical properties is an increase in the ultimate strength and yield strength, which is most noticeable at high rates of 10–2 ÷ 103 s–1. The features of HEAs deformation behavior in the mono- and poly-crystalline states are noted. The complex of high operational properties of HEAs makes it possible to use them in various industries. There are good prospects of using energy treatment to modify the surface layers and further improve HEAs properties.

About the Authors

K. A. Osintsev
Siberian State Industrial University; Samara National Research University
Russian Federation

Kirill A. Osintsev, Postgraduate of the Chair of Metals Technology and Aviation Materials

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007
34 Moskovskoe Route, Samara 443086



V. E. Gromov
Siberian State Industrial University
Russian Federation

Viktor E. Gromov, Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007



S. V. Konovalov
Siberian State Industrial University; Samara National Research University
Russian Federation

Sergei V. Konovalov, Dr. Sci. (Eng.), Prof., Siberian State Industrial University; Head of the Chair of Metals Technology and Aviation Materials, Samara National Research University

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007
34 Moskovskoe Route, Samara 443086



Yu. F. Ivanov
Institute of High Current Electronics Siberian Branch of the Russian Academy of Sciences
Russian Federation

Yurii F. Ivanov, Dr. Sci. (Phys.-Math.), Prof., Siberian State Industrial University; Chief Researcher, Institute of High Current , Siberian Branch of the Russian Academy of Sciences

2/3 Akademicheskii Ave., Tomsk 634021



I. A. Panchenko
Siberian State Industrial University
Russian Federation

Irina A. Panchenko, Cand. Sci. (Eng.), Assist. Prof. of the Chair of Quality Management and Innovation

42 Kirova Str., Novokuznetsk, Kemerovo Region – Kuzbass 654007



References

1. Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes // Advanced Engineering Materials. 2004. Vol. 6. No. 5. P. 299-303. https://doi.org/10.1002/adem.200300567

2. Zhang Y, Yang X., Liaw P.K. Alloy design and properties optimization of high-entropy alloys // JOM. 2012. Vol. 64. No. 7. P. 830-838. https://doi.org/10.1007/s11837-012-0366-5

3. Yeh J.W. Recent progress in high-entropy alloys // Annales de Chimie. Science des Materiaux. 2006. Vol. 31. No. 6. P. 633-648. https://doi.org/10.3166/acsm.31.633-648

4. Yeh J.W. Alloy design strategies and future trends in high-entropy alloys // JOM. 2013. Vol. 65. No. 12. P. 1759-1771. https://doi.org/10.1007/s11837-013-0761-6

5. Zhang L.S., Ma G.-L., Fu L.-C., Tian J.-Y. Recent progress in high-entropy alloys П Advanced Materials Research. 2013. Vol. 631-632. P. 227-232. https://doi.org/10.4028/www.scientific.net/AMR.631-632.227

6. Zhang Y, Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys // Progress in Materials Science. 2014. Vol. 61. P. 1-93. https://doi.org/10.1016/j.pmatsci.2013.10.001

7. Gali A., George E.P. Tensile properties of high- and medium-entropy alloys // Intermetallics. 2013. Vol. 39. P. 74-78. https://doi.org/10.1016/j.intermet.2013.03.018

8. Cantor B., Chang I.T.H, Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. Vol. 375-377. P. 213-218. https://doi.org/10.1016/j.msea.2003.10.257

9. Jiang L., Lu Y, Dong Y, Wang T., Cao Z., Li T. Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0 5 alloy casting ingot H Intermetallics. 2014. Vol. 44. P. 37-43. https://doi.org/10.1016/j.intermet.2013.08.016

10. Shun T.-T., Chang L.-Y, Shiu M.-H. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys // Materials Characterization. 2012. Vol. 70. P. 63-67. https://doi.org/10.1016/j.matchar.2012.05.005

11. Senkov O.N., Miracle D.B. A topological model for metallic glass formation // Journal of Non-Crystalline Solids. 2003. Vol. 317. No. 1-2. P. 34-39. https://doi.org/10.1016/S0022-3093(02)01980-4

12. Takeuchi A., Chen N., Wada T., Yokoyama Y, Kato H., Inoue A., Yeh J.W Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter // Intermetallics. 2011. Vol. 19. No. 10. P. 1546-1554. https://doi.org/10.1016/j.intermet.2011.05.030

13. Singh S., Wanderka N., Murty B.S., Glatzel U., Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy // Acta Materialia. 2011. Vol. 59. No. 1. P. 182-190. https://doi.org/10.1016/j.actamat.2010.09.023

14. George E.P., Curtin W.A., Tasan C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms // Acta Materialia. 2020. Vol. 188. P. 435-474. https://doi.org/10.1016/j.actamat.2019.12.015

15. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Materialia. 2017. Vol. 122. P. 448-511. https://doi.org/10.1016/j.actamat.2016.08.081

16. Raghavan R., Kirchlechner C., Jaya B.N., Feuerbacher M., Dehm G. Mechanical size effects in a single crystalline equiatomic FeCiCoMnNi high entropy alloy // Scripta Materialia. 2017. Vol. 129. P. 52-55. https://doi.org/l0.1016/j.scriptamat.2016.10.026

17. Zhou Y.J., Zhang Y, Wang Y.L., Chen G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties // AIP Applied Physics Letters. 2007. Vol. 90. Article 181904. https://doi.org/10.1063/1.2734517

18. Qiao J.W, Ma S.G., Huang E.W, Chuang C.P., Liaw, P.K., Zhang Y. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperature H Materials Science Forum. 2011. Vol. 688. P. 419-425. https://doi.org/10.4028/www.scientific.net/MSF.688.419

19. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. Vol. 345. No. 6201. P. 1153-1158. https://doi.org/10.1126/science.1254581

20. Seol J.B., Bae J.W, Li Z., Han J.Ch., Kim J.G., Raabe D., Kim H.S. Boron doped ultrastrong and ductile high-entropy alloys // Acta Materialia. 2018. Vol. 151. P. 366-376. https://doi.org/10.1016/j.actamat.2018.04.004

21. Slone C.E., Chakraborty S., Miao J., George E.P., Mills M.J., Niez- goda S.R. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy // Acta Materialia. 2018. Vol. 158. P. 38-52. https://doi.org/l0.1016/j.actamat.2018.07.028

22. Wu Z., Bei H., Pharr G.M., George E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures // Acta Materialia. 2014. Vol. 81. P. 428-441. https://doi.org/10.1016/j.actamat.2014.08.026

23. Otto F., Dlouhy A., Somsen C., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy // Acta Materialia. 2013. Vol. 61. No. 15. P. 5743-5755. https://doi.org/10.1016/j.actamat.2013.06.018

24. Wigley D.A. Mechanical properties of materials at low temperatures // Cryogenics. 1968. Vol. 8. No. 1. P. 3-12. https://doi.org/10.1016/S0011-2275(68)80042-6

25. Yeh J.W. Physical metallurgy of high-entropy alloys // JOM. 2015. Vol. 67. No. 10. P. 2254-226. https://doi.org/10.1007/s11837-015-1583-5

26. Okamoto N.L., Fujimoto S., Kambara Y, Kawamura M., Zhenghao M.T.C., Matsunoshita H., Tanaka K., Inui H., George E.P. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy // Scientific Reports. 2016. Vol. 6. Article 35863. https://doi.org/10.1038/srep35863

27. Patriarca L., Ojha A., Sehitoglu H., Chumlyakov YI. Slip nucleation in single crystal FeNiCoCrMn high entropy alloy H Scripta Materia- lia. 2016. Vol. 112. P. 54—57. http://dx.doi.org/10.1016/j.scriptamat.2015.09.009

28. Kireeva I.V., Chumlyakov Yu.L, Pobedennaya Z.V., Kuksgau- sen I.V., Karaman I. Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy // Materials Science and Engineering: A. 2017. Vol. 705. P. 176-181. https://doi.org/10.1016/j.msea.2017.08.065

29. Wu Z., Gao Y.F., Bei H. Single crystal plastic behavior of a singlephase, face-center-cubic-structured, equiatomic FeNiCrCo alloy // Scripta Materialia. 2015. Vol. 109. P. 108-112. https://doi.org/10.1016/j.scriptamat.2015.07.031

30. Park J.M., Moon J., Bae J.W., Jang M.J., Park J., Lee S., Kim H.S. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entro- py alloy // Materials Science and Engineering: A. 2018. Vol. 719. P. 155-163. https://doi.org/10.1016/j.msea.2018.02.031

31. Zhang Z., Sheng H., Wang Z., Gludovatz B., Zhang Z., George E.P., Yu Q., Mao S.X., Ritchie R.O. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy И Nature Communications. 2017. Vol. 8. No. 1. Article 14390. https://doi.org/10.1038/ncomms14390

32. Laplanche G., Kostka A., Horst O.M., Eggeler G., George E.P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy//Acta Materialia. 2016. Vol. 118. P. 152-163. https://doi.org/10.1016/j.actamat.2016.07.038

33. Varvenne C., Luque A., Curtin W.A. Theory of strengthening in fee high entropy alloys // Acta Materialia. 2016. Vol. 118. P. 164-176. https://doi.org/10.1016/j.actamat.2016.07.040

34. Shaysultanov D.G., Salishchev G.A., Ivanisenko Yu.V, Zherebtsov S.V., Tikhonovsky M.A., Stepanov N.D. Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure // Journal of Alloys and Compounds. 2017. Vol. 705. P. 756-763. https://doi.org/10.1016/j.jailcom.2017.02.211

35. Meyers M.A., Vohringer O., Lubarda V.A. The onset of twinning in metals: A constitutive description I I Acta Materialia. 2001. Vol. 49. No. 19. P. 4025-4039. https://doi.org/10.1016/S1359-6454(01)00300-7

36. Zhu Y.T., Liao X.Z., Wu X.L. Deformation twinning in nanocrystalline materials // Progress in Materials Science. 2012. Vol. 57. No. 1. P. 1 -62. https://doi.org/10.1016/j.pmatsci.2011.05.001

37. Senkov O.N., Semiatin S.L. Microstructure and properties of a refractory high- entropy alloy after cold working // Journal of Alloys and Compounds. 2015. Vol. 649. P. 1110-1123. https://doi.org/10.1016/j.jailcom.2015.07.209

38. Juan Chien-Chang, Tseng Ko-Kai, Hsu Wei-Lin, Tsai Ming- Hung, Tsai Che-Wei, Lin Chun-Ming, Chen Swe-Kai, Lin Su- Jien, YehJien-Wei. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys // Materials Letters. 2016. Vol. 175. P. 284-287. https://doi.org/10.1016/j.matlet.2016.03.133

39. Zamora R.J., Uberuaga B.P., Perez D., Voter A.F. The modem temperature-accelerated dynamics approach // Annual Review of Chemical and Biomolecular Engineering. 2016. Vol. 7. P. 87-110. https://doi.org/10.1146/annurev-chembioeng-080615-033608

40. Perez D. Uberuaga B.P., Voter A.F. The parallel replica dynamics method - coming of age // Computational Materials Science. 2015. Vol. 100. PartB.P. 90-103. https://doi.org/10.1016/j.commatsci.2014.12.011

41. Egami T., Guo W, Rack P.D., Nagase T. Irradiation resistance of multicomponent alloys // Metallurgical and Materials Transactions A. 2014. Vol. 45. P. 180-183. https://doi.org/10.1007/s11661-013-1994-2

42. Kunce I., Polanski M., Bystrzycki J. Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS) // International Journal of Hydrogen Energy. 2013. Vol. 38. No. 27. P. 12180-12189. https://doi.org/10.1016/j.ijhydene.2013.05.071

43. Kao Y.F., Chen S.K., Sheu J.H., Lin J.T., Lin W.E., Yeh J.W, Lin S.J., Lion Т.Н., Wang C.W. Hydrogen storage properties of multi-principal-component CoFeMnTi(x)V(y)Zr(z) alloys // International Journal of Hydrogen Energy. 2010. Vol. 35. No. 17. P. 9046-9059. https://doi.org/10.1016/j.ijhydene.2010.06.012

44. Firstov S.A., Gorban’ V.F., Danilenko N.I., Karpets M.V., Andreev A.A., Makarenko E.S. Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy// Powder Metallurgy and Metal Ceramics. 2014. Vol. 52. P. 560-566. https://doi.org/10.1007/s11106-014-9560-z

45. Pogrebnjak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V.M. The structure and properties of high-entropy alloys and nitride coatings based on them H Russian Chemical Reviews. 2014. Vol. 83. P. 1027-1061. https://doi.org/10.1070/RCR4407

46. Zaguliaev D., Gromov V, Rubannikova Y, Konovalov S., Ivanov Y, Romanov D., Semin A. Structure and phase states modification of AL-11SI-2CU alloy processed by ion-plasma jet and pulsed electron beam // Surface and Coatings Technology. 2020. Vol. 383. Article 125246. https://doi.org/10.1016/j.surfcoat.2019.125246

47. Zhang C., LvP., XiaEL, Yang Z., Konovalov S., ChenX., Guan Q. The microstructure and properties of nanostructured Cr-Al alloying layer fabricated by high-current pulsed electron beam // Vacuum. 2019. Vol. 167. P. 263-270. https://doi.org/10.1016/j.vacuum.2019.06.022

48. Konovalov S.V., Komissarova LA., Ivanov Yu.F., Gromov V.E., Kosino v D.E. Structural and phase changes under electropulse treatment of fatigue-loaded titanium alloy VT1-0 // Journal of Materials Research and Technology. 2019. Vol. 8. No. 1. P. 1300-1307. https://doi.org/10.1016/j.jmrt.2018.09.008

49. Konovalov S., Ivanov Y, Gromov V, Panchenko I. Fatigue-induced evolution of AISI 310S steel microstructure after electron beam treatment // Materials. 2020. Vol. 13. No. 20. Article 4567. https://doi.org/10.3390/ma13204567

50. Romanov D., Moskovskii S., Konovalov S., Sosnin K., Gromov V, Ivanov Y, Improvement of copper alloy properties in electro-explosive spraying of ZnO-Ag coatings resistant to electrical erosion // Journal of Materials Research and Technology. 2019. Vol. 8. No. 6. P. 5515-5523. https://doi.org/10.1016/j.jmrt.2019.09.019


Review

For citations:


Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High-entropy alloys: Structure, mechanical properties, deformation mechanisms and application. Izvestiya. Ferrous Metallurgy. 2021;64(4):249-258. (In Russ.) https://doi.org/10.17073/0368-0797-2021-4-249-258

Views: 1513


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)