Wasteless processing of ladle furnace and electric arc furnace slag
https://doi.org/10.17073/0368-0797-2021-3-192-199
Abstract
The actual problem of mineral resources depletion in ferrous metallurgy can be effectively solved by complex reuse of technogenic waste. That waste is mostly presented by EAF (electric arc furnace) slag and LF (ladle furnace) slag. These two kinds of slag have no complex full utilization. The residues of slag are going to the dump and then the slag dump locations pollute the environment. However, the residues of EAF and LF slag can be transformed into the valuable industrial product by interaction of the slag components. This work presents the research for joint wasteless processing of EAF and LF slag with production of Portland clinker and cast iron. The article describes disadvantages of known methods of each slag processing; the paper also shows the significance of LF slag utilization. Design and calculations of the research are presented as well as its experiment methodology. The final results show five chemical compositions for the mixtures, which allow the complex processing of this slag without any waste left. Such processing provides the production of cast iron and Portland clinker both meeting requirements of normative documents. The paper also describes the results of viscosity measurements of slag compositions, the obtained slag phases, and presents the final temperature conditions. The work also considers the results of industrial tests for the developed processing technology and a complete technological chain involving the use of tilt rotary furnaces.
Keywords
About the Authors
O. Yu. SheshukovRussian Federation
Oleg Yu. Sheshukov, Dr. Sci. (Eng.), Prof., Director; Chief Researcher of the Laboratory “Pyrometallurgy of Ferrous Metals”
28 Mira Str., Yekaterinburg 620002
101 Amundsena Str., Yekaterinburg 620016
D. K. Egiazar’yan
Russian Federation
Denis K. Egiazar’yan, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Metallurgy of Iron and Alloys”; Senior Researcher
28 Mira Str., Yekaterinburg 620002
101 Amundsena Str., Yekaterinburg 620016
D. A. Lobanov
Russian Federation
Daniil A. Lobanov, Research Associate of the Group of Technogenic
Waste Problems
101 Amundsena Str., Yekaterinburg 620016
References
1. Demin B.L., Sorokin Yu.V., Zimin A.I. Processing metallic-slag materials. Steel in Translation. 2000, vol. 30, no. 11, pp. 61–64.
2. Smirnov L.A., Sorokin Yu.V., Demin B.L., etc. Modern technologies and equipment for the processing and use of industrial wastes of metallurgical production. In: Proc. of Int. Cong. “Fundamental Basics of Technologies for Technogenic Waste”: TECHNOGEN-2017. Yekaterinburg: UB RAS, 2017, pp. 29–33. (In Russ.).
3. Gudim Yu.A., Golubev A.A., Ovchinnikov S.G. Modern methods of wasteless steel slag utilization. Stal’. 2009, no. 9, pp. 93–95. (In Russ.).
4. Egiazar’yan D.K., Shamanov A.N., Sheshukov O.Yu., etc. Analysis of the refining properties and viscosity of ladle furnace slag. In: Proc. of 72nd Int. Sci. Tech. Conf.“Actual Problems of Modern Science, Technics and Education”. Magnitogorsk, 2014, vol. 1, pp. 180–185. (In Russ.).
5. Ufimtsev V.M., Korobeinikov L.A. Slags in concrete: new possibilities. Tekhnologii betonov. 2014, no. 6, pp. 50–53. (In Russ.).
6. Klachkov A.A., Krasil’nikov V.O., Zuev M.V., etc. Advanced technologies for EAF lining operation on the example of EAF-135 of “Seversky Pipe Plant” OJSC. Novye ogneupory. 2012, no. 3, pp. 99–104. (In Russ.).
7. Aksenova V.V., Safonov V.M. Balance of slag-metal system before tapping from EAF-160. In: Mater. of 13th Int. Russ. Sci.Pract. Conf. “Modern Problems of Mining and Metallurgical Complex”. Stary Oskol: 2016, vol. II, pp. 15–18. (In Russ.).
8. Song Q., Shen B., Zhou Z. Effect of blast furnace slag and steel slag on cement strength, pore structure and autoclave expansion. Advanced Materials Research. 2011, vol. 168-170, pp. 17–20. http://doi.org/10.4028/www.scientific.net/AMR.168-170.17
9. Skaf M., Manso M.J., Aragon A., Fuente-Alonso J.A., Ortega-López V. EAF slag in asphalt mixes: A brief review of its possible re-use. Resources, Conservation and Recycling. 2017, vol. 120, pp. 176–185. http://doi.org/10.1016/j.resconrec.2016.12.009
10. Abu-Eishah S., El-dieb A., Bedir M. Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Construction and Building Materials. 2012, vol. 34, pp. 249–256. http://doi.org/10.1016/j.conbuildmat.2012.02.012
11. Tsakiridis P.E., Papadimitriou G. D., Tsivilis S., Koroneos C. Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials. 2008, vol. 152, no. 2, pp. 805–811. http://doi.org/10.1016/j.jhazmat.2007.07.093
12. Santamaría A., Rojí E., Skaf M., Marcos I., Gonzalez J.J. The use of steelmaking slags and fly ash in structural mortars. Construction and Building Materials. 2016, vol. 106, pp. 364–373. http://doi.org/10.1016/j.conbuildmat.2015.12.121
13. Manso J.M., Gonzalez J., Polanco J. A. Electric arc furnace slag in concrete. Journal of Materials in Civil Engineering. 2004, vol. 16, no. 6, pp. 639–645. http://doi.org/10.1061/(ASCE)08991561(2004)16:6(639)
14. Sheshukov O.Yu., Mikheenkov M.A., Egiazaryan D.K., Ovchinnikova L.A., Lobanov D.A. Chemical stabilization features of ladle furnace slag in ferrous metallurgy. KnE Materials Science. TECHNOGEN-2017, pp. 59–64. http://doi.org/10.18502/kms.v2i2.947
15. Mikheenkov M.A., Sheshukov O.Yu., Lobanov D.A. Slag technogenic formations as a material for the production of silicate products and pig iron. Mashinostroenie: setevoi elektronnyi nauchnyi zhurnal. 2018, vol. 6, no. 1, pp. 46–51. (In Russ.).
16. Lobanov D.A., Mikheenkov M.A., Sheshukov O.Yu., etc. Ferrous metallurgical slag formation and improving the technology of metallurgical treatment and slag complex processing. In: XV Int. Congr. of Steelmakers. Proc. devoted to the 100th Anniversary of NUST “MISiS” and to the 380th Anniversary of Russian Metallurgy. Tula: izd. RPK “PrintAP”, 2018, pp. 462-467. (In Russ.).
17. Pontikes Y., Jones P. T., Geysen D., Blanpain B. Options to prevent dicalcium silicate-driven disintegration of stainless steel slags. Archives of Metallurgy and Materials. 2010, vol. 55, no. 4, pp. 1169–1172. http://doi.org/10.2478/v10172-010-0020-6
18. Shi C. Characteristics and cementitious properties of ladle slag fines from steel production. Cement and Concrete Research. 2002, vol. 32, no. 3, pp. 459-462. http://doi.org/10.1016/S0008-8846(01)00707-4
19. Skaf M., Ortega-López V., Fuente-Alonso J.A., Santamaria A., Manso J.M. Ladle furnace slag in asphalt mixes. Construction and Building Materials. 2016, vol. 122, pp. 488–495. http://doi.org/10.1016/j.conbuildmat.2016.06.085
20. Menad N., Kanari N., Save M. Recovery of high grade iron compounds from LD slag by enhanced magnetic separation techniques. International Journal of Mineral Processing. 2014, vol. 126, pp. 1–9. http://doi.org/10.1016/j.minpro.2013.11.001
21. Artioli G., Bullard J.W. Cement hydration: The role of adsorption and crystal growth. Crystal Research and Technology. 2013, vol. 48, no. 10, pp. 903–918. http://doi.org/10.1002/crat.201200713
22. Sheshukov O.Yu., Mikheenkov M.A., Nekrasov I.V. Refining Slag Utilization: Monograph. Yekaterinburg: Ural Federal University, 2017, 208 p. (In Russ.).
23. Novikov V.K., Nevidimov V.N. Polymer Nature of Molten Slags. Yekaterinburg: USTU-UPI: 2006, 62 p. (In Russ.).
24. Ural-Tin. Rotary Furnace. Available at URL: https://ural-olovo.ru/projects/rotornaya-pech/rotornaya-pech/ (accessed: 14.12.2020). (In Russ.).
Review
For citations:
Sheshukov O.Yu., Egiazar’yan D.K., Lobanov D.A. Wasteless processing of ladle furnace and electric arc furnace slag. Izvestiya. Ferrous Metallurgy. 2021;64(3):192-199. (In Russ.) https://doi.org/10.17073/0368-0797-2021-3-192-199