Fluorammonium method of titanium slag processing
https://doi.org/10.17073/0368-0797-2021-3-178-183
Abstract
Titanium dioxide is the most common titanium-containing product on the world market, and the demand for it is increasing. The global consumption of TiO2 is 7 – 7.5 million tons annually. Titanium dioxide is mainly obtained from ilmenite and rutile concentrates. The largest producers are China, USA, Germany, UK, Mexico, and Saudi Arabia. In addition to the natural resources of titan, there are man-made sources. This type of resource includes titanium-containing slags obtained as a result of pyrometallurgical processing of ores and concentrates containing titanium dioxide. These slags, in addition to titanium dioxide, contain silicon in the form of dioxide, silicates or aluminosilicates, whose chemical processing is difficult due to their high melting point (more than 2000 °C) and the chemical stability of these compounds in mineral acids (sulfuric, nitric, hydrochloric). Processing of such raw materials is carried out by “classical” chlorine and sulfuric acid methods. The use of fluorides in industry is realized in the production of aluminum, zirconium, uranium, beryllium, niobium, etc., which indicates the possibility of using fluoride methods for titanium slags processing. The article discusses a method for producing titanium dioxide based on the use of ammonium hydrodifluoride NH4HF2 , which has a high reactivity to a number of chemically resistant oxides (oxides of silicon, titanium, aluminum, etc.). The fluoroammonium method for processing titanium slag using NH4HF2 involves slag decomposition of in NH4HF2 melt followed by silicon admixture sublimation. Cleaning from iron, aluminum and other impurities is carried out using a solution of NH4HF2. Further precipitation of titanium with treatment of the precipitate by AlCl3 and ZnCl2 solutions followed by calcination allows to obtain a rutile modification of titanium dioxide.
Keywords
About the Authors
A. N. DmitrievRussian Federation
Andrei N. Dmitriev, Dr. Sci. (Eng.), Prof., Chief Researcher of the Laboratory “Pyrometallurgy of Ferrous Metals”
101 Amundsena Str., Yekaterinburg 620016
A. A. Smorokov
Russian Federation
Andrei А. Smorokov, Postgraduate, Assistant
30 Lenina Ave., Tomsk 634050
A. S. Kantaev
Russian Federation
Aleksandr S. Kantaev, Cand. Sci. (Eng.), Assist. Prof.
30 Lenina Ave., Tomsk 634050
D. S. Nikitin
Russian Federation
Dmitrii S. Nikitin, Cand. Sci. (Eng.), Senior Lecturer
30 Lenina Ave., Tomsk 634050
G. Yu. Vit’kina
Russian Federation
Galina Yu. Vit’kina, Cand. Sci. (Eng.), Senior Researcher
101 Amundsena Str., Yekaterinburg 620016
References
1. Bernhardt D., Reilly J.F. Mineral Commodity Summaries 2020. Virginia, Reston: U.S. Geological Survey, 2020, 200 p.
2. Fang Z.Z., Froes F., Zhang Y. Extractive Metallurgy of Titanium: Conventional and Recent Advances in Extraction and Production of Titanium Metal. USA: Elsevier, 2019, 436 p.
3. State report «On the state and use of mineral resources of the Russian Federation in 2018”. Kiselev E.A. ed. Moscow: VIMS, 2019, 426 p. (In Russ.).
4. Dubenko K.A., Nikolenko M.V., Aksenenko E.V., Kostyniuk A., Likozar B. Mechanism, thermodynamics and kinetics of rutile leaching process by sulfuric acid reactions. Processes. 2020, vol. 8, no. 6, article 640. http://doi.org/10.3390/pr8060640
5. O’Hara M.J., Kellogg C.M., Parker C.M., Morrison S.S., Corbey J.F., Grate J.W. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis. Chemical Geology. 2017, vol. 466, pp. 341–357. http://doi.org/10.1016/j.chemgeo.2017.06.023
6. Grate J.W., Gonzalez J.J., O’Hara M.J., Kellogg C.M., Morrison S.S., Koppenaal D.W., Chan G.C.-Y., Mao X., Zorba V., Russo R.E. Solid matrix transformation and tracer addition using molten ammonium bifluoride salt as a sample preparation method for laser ablation inductively coupled plasma mass spectrometry. Analyst. 2017, vol. 142, no. 18, pp. 3333–3340. http://doi.org/10.1039/c7an00777a
7. Claux B., Benes O., Capelli E., Soucek P., Meier R. On the fluorination of plutonium dioxide by ammonium hydrogenfluoride. Journal of Fluorine Chemistry. 2016, vol. 183, pp. 10–13. https://doi.org/10.1016/j.jfluchem.2015.12.009
8. Plessis W., Pienaar A.D., Postma C.J., Crouse P.L. Effect of the value of x in NH4F·xHF on the digestion of plasma-dissociated zircon. International Journal of Mineral Processing. 2016, vol. 147, pp. 43–47. http://doi.org/10.1016/j.minpro.2016.01.002
9. Laptash N., Maslennikova I. Hydrofluoride decomposition of natural materials including zirconium-containing minerals. IOP Conference Series: Materials Science and Engineering. 2016, vol. 112, article 012024. http://doi.org/10.1088/1757-899X/112/1/012024
10. Guzeev V.V., D’yachenko A.N., Uralbaev A.Sh. Fluoroammonium method of zircon decomposition. Izvestiya Tomskogo politekhnicheskogo universiteta. 2002, vol. 305, no. 3, pp. 185–190. (In Russ.).
11. Smorokov A.A., Kraidenko R.I. Obtaining zirconium dioxide using ammonium fluorides. Polzunovskii vestnik. 2017, no. 3, pp. 126–131. (In Russ.).
12. Dyachenko A.N., Kraydenko R.I., Petlin I.V., Malyutin L.N. The research of (NH4 )2BeF4 solution purification effectiveness. Procedia Engineering. 2016, vol. 152, pp. 51–58. http://doi.org/10.1016/j.proeng.2016.07.624
13. Dyachenko A.N., Kraydenko R.I., Lesnikova M.S., Malyutin L.N., Petlin I.V. Physics and chemistry of the hydrogen fluoride production process from fluorine containing waste. IOP Conference Series: Materials Science and Engineering. 2016, article 012012. http://doi.org/10.1088/1757-899X/135/1/012012
14. Andreev A.A., D’yachenko A.N., Kraidenko R.I. Fluoroammonium method of ilmenite processing. Khimicheskaya promyshlennost’ segodnya. 2007, no. 9, pp. 13–17. (In Russ.).
15. Andreev A.A., D’yachenko A.N., Kraidenko R.I. Halogenammonium separation of a mineral oxide mixture into individual components. Khimicheskaya promyshlennost’ segodnya. 2007, no. 3, pp. 6–11. (In Russ.).
16. Smorokov A.A., Kantaev A.S., Borisov V.A. Research of titanomagnetite concentrate decomposition by means of ammonium fluoride and ammonium hydrogen fluoride. AIP Conference Proceedings. 2019, vol. 2143, article 020022. http://doi.org/10.1063/1.5122921
17. Durbaeva S.K., Letuev A.V., Malyutin L.N., Smorokov A.A. Investigation of the properties of fluoroammonium iron complexes. In: Materials of the XXIII Int. Sci. and Tech. Conf. “Scientific Foundations and Practice of Processing Ores and Technogenic Raw Materials”, April 10–13, 2018, Yekaterinburg. Yekaterinburg: Fort Dialog-Iset’, 2018, pp. 353–357. (In Russ.).
18. Sachkov V.I., Nefedov R.A., Orlov V.V., Medvedev R.O., Sachkova A.S. Hydrometallurgical processing technology of titanomagnetite ores. Minerals. 2018, no. 8, no.1, article 2. http://doi.org/10.3390/min8010002
19. Delmon B. Introduction à la cinétique hétérogène. Technip, 1969, 695 p. (In Fr.).
20. Smorokov A.A., Kantaev A.S., Perederin Yu.V. Drum rotary furnace. Patent RF no. 2681328. MPK C01F 1/00. Bulleten’ izobretenii. 2019, no. 74. (In Russ.).
Review
For citations:
Dmitriev A.N., Smorokov A.A., Kantaev A.S., Nikitin D.S., Vit’kina G.Yu. Fluorammonium method of titanium slag processing. Izvestiya. Ferrous Metallurgy. 2021;64(3):178-183. (In Russ.) https://doi.org/10.17073/0368-0797-2021-3-178-183