Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Diborides of transition metals: Properties, application and production. Review. Part 1. Titanium and vanadium diborides

https://doi.org/10.17073/0368-0797-2021-2-149-164

Abstract

The properties, applications and methods for producing titanium and vanadium diborides are considered. These diborides are oxygen-free refractory metal-like compounds. As a result, they are characterized by high values of thermal and electrical conductivity. Their hardness is relatively high. Titanium and vanadium diborides exhibit significant chemical resistance in aggressive environments. For these reasons, they have found application in modern technics. So, they are used as surfacing materials when applying wear-resistant coatings on steel products. It is also possible to use vanadium diboride as a catalyst in organic synthesis and the anode in renewable electrochemical current sources. Perspective are ceramics B4C – TiB2 and B4C – VB2 , which make it possible to obtain products based on boron carbide with high-quality performance characteristics, in particular, with increased crack resistance. Such composite ceramics are obtained by means of hot pressing, spark plasma sintering and pressureless sintering. The properties of refractory compounds depend on the content of impurities and dispersion. Therefore, to solve a specific problem associated with the use of refractory compounds, it is important to choose the method of their preparation correctly, to determine the admissible content of impurities in the starting components. This leads to the presence of different methods for the synthesis of borides. The main methods for their preparation are: synthesis from simple substances (metals and boron); borothermal reduction of oxides; carbothermal reduction (reduction of mixtures of metal oxides and boron with carbon; metallothermal reduction of mixtures of metal oxides and boron; carbide-boron reduction. Plasma-chemical synthesis (deposition from the vapor-gas phase) is also used to obtain diboride nanopowders. Each of these methods is characterized in the article.

About the Authors

Yu. L. Krutskii
Novosibirsk State Technical University
Russian Federation

Yurii L. Krutskii, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Chemistry and Chemical Technology”

20 K. Marksa ave., Novosibirsk 630073



N. Yu. Cherkasova
Novosibirsk State Technical University
Russian Federation

Nina Yu. Cherkasova, Cand. Sci. (Eng.), Junior Researcher of the Laboratory of Physicochemical Technologies and Functional Materials

20 K. Marksa ave., Novosibirsk 630073



T. S. Gudyma
Novosibirsk State Technical University
Russian Federation

Tat’yana S. Gudyma, Postgraduate of the Chair “Chemistry and Chemical Technology”

20 K. Marksa ave., Novosibirsk 630073



O. V. Netskina
Boreskov Institute of Catalysis SB RAS; Novosibirsk State University
Russian Federation

Ol’ga V. Netskina, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Hydride Investigation, Boreskov Institute of Catalysis SB RAS, Senior Lecturer of the Chair “Physical Chemistry”, Novosibirsk State University

5 Lavrent’eva ave., Novosibirsk 630090
2 Pirogova str., Novosibirsk 630090



T. M. Krutskaya
Novosibirsk State University of Architecture and Civil Engineering
Russian Federation

Tat’yana M. Krutskaya, Cand. Sci. (Chem.), Assist. Prof. of the Chair of Physics and Chemistry

113 Leningradskaya str., Novosibirsk 630008



References

1. State Diagrams of Binary Metal Systems. Reference book. Vol. 1. Lyakishev N.P. ed. Moscow: Mashinostroenie, 1996, 992 p. (In Russ.).

2. Serebryakova T.I., Neronov V.A., Peshev P.D. High Temperature Borides. Moscow: Metallurgiya, Chelyabinskoe otdelenie, 1991, 368 p. (In Russ.).

3. Properties, Production and Application of Refractory Compounds. Reference book. Kosolapova T.Ya. ed. Moscow: Metallurgiya, 1986, 928 p. (In Russ.).

4. Kosolapova T.Ya. Chemical properties of refractory compounds. Zhurnal VKhO im. D.I. Mendeleeva. 1979, vol. 34, no. 3, pp. 244–249. (In Russ.).

5. Grigor’ev O.N. Ceramics and cermets based on oxygen-free refractory compounds. Poroshkovaya metallurgiya. 2012, no. 11/12, pp. 100–116. (In Russ.).

6. Zhao G., Huang C., Liu H., Zou B., Zhu H., Wang J. Microstructure and mechanical properties of TiB 2 –SiC ceramic composites by reactive hot pressing // International Journal of Refractory Metals and Hard Materials. 2014. Vol. 42. Р. 36–41. http://doi.org/10.1016/j.ijrmhm.2013.10.007

7. Mroz C. Annual minerals review. Titanium diboride // American Ceramic Society Bulletin. 1995. Vol. 74. No. 6. P. 159.

8. Artem’ev A.A., Sokolov G.N., Dubtsov Yu.N., Lysak V.I. Formation of the composite structure of wear-resistant deposited metal with boride hardening. Izv. vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2011, no. 2, pp. 44–48. (In Russ.).

9. Ordan’yan S.S., Stepanenko E.K., Dmitriev A.I., Shchemeleva M.V. Interaction in the system В4 С–TiB 2 . Sverkhtverdye materialy. 1986, no. 5, pp. 27–29. (In Russ.).

10. Heydari M.S., Baharvandi H.R. Comparing the effect of different sintering methods for ceramics on the physical and mechanical properties of B4 C–TiB nanocomposites // International Journal of Refractory Metals and 2 Hard Materials. 2015. Vol. 61. P. 224–232. http://doi.org/10.1016/j.ijrmhm.2015.04.003

11. Dudina D.V., Hulbert D.M., Jiang D., Unuvar C., Cytron C.J., Mukherjee A.K. In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering // Journal of Materials Science. 2008. Vol. 43. P. 3569–3576. http://doi.org/10.1007/s10853-008-2563-8

12. Hulbert D.M., Jiang D., Dudina D.V., Mukherjree A.K. The synthesis and consolidation of hard materials by spark plasma sintering // International Journal of Refractory Metals and Hard Materials. 2009. Vol. 27. No. 2. P. 367–375. http://doi.org/10.1016/j.ijrmhm.2008.09.011

13. Nikzad L., Orru R., Licheri R., Cao G. Fabrication and formation mechanism of B4 C–TiB 2 composite by reactive spark plasma sintering using unmilled and mechanically activated reactants // Journal of the American Ceramic Society. 2012. Vol. 95. No. 11. P. 3463–3471. http://doi.org/10.1111/j.1551-2916.2012.05416.x

14. Nikzad L., Licheri R., Ehadzadeh T., Orru R., Cao G. Effect of ball milling on reactive spark plasma sintering of B4 C–TiB 2 composites // Ceramic International. 2012. Vol. 38. No. 8. P. 6469–6480. http://doi.org/10.1016/j.ceramint.2012.05.024

15. Scherbakov V.A., Gryadunov A.N., Alymov M.I. Synthesis and characteristics of B 4 C–TiB 2 composites // Advanced Materials and Technologies. 2016. No. 4. P. 16–21. http://doi.org/10.17277/amt.2016.04.pp.016-021

16. Xu C., Cai Y., Flodstrom K., Li Z., Esmaelizadeh S., Zhang G.-J. Spark plasma sintering of B4 C ceramics: The effects of milling medium and TiB 2 addition // International Journal of Refractory Metals and Hard Materials. 2012. Vol. 30. No. 1. P. 139–144. http://doi.org/10.1016/j.ijrmhm.2011.07.016

17. Skorokhod V.V., Krstic V.D. High strength-high toughness B 4 C–TiB 2 composite // Journal of Materials Science Letters. 2000. Vol. 19. P. 237–239. http://doi:10.1023/A:1006766910536

18. Wang Y.-J., Peng H.-X., Ye F., Zhou Y. Effect of TiB 2 content on microstructure and mechanical properties of in-situ fabricated TiB 2 /B4 C composites // Transactions of Nonferrous Metals Society of China. 2011. Vol. 21. No. 2. P. 369–373. http://doi.org/10.1016/S1003-6326(11)61608-7

19. Yue X.Y., Zhao S.M., Yu L., Ru H.Q. Microstructures and mechanical properties of B4 C–TiB 2 composite prepared by hot pressure sintering // Key Engineering Materials. 2010. Vol. 434. P. 50–53. http://doi.org/10.4028/www.scientific.net/KEM.434-435.50

20. Skorokhod V.V. Processing, microstructure, and mechanical properties of B4 C–TiB 2 particulate sintered composites. Part I. Pressureless sintering and microstructure evolution // Powder Metallurgy and Metal Ceramics. 2000. Vol. 39. P. 414–423. http://doi.org/10.1023/A:1026625909365

21. Skorokhod V.V. Processing, microstructure, and mechanical properties of B4 C–TiB 2 particulate sintered composites. Part II. Fracture and mechanical properties // Powder Metallurgy and Metal Ceramics. 2000. Vol. 39. P. 504–513. http://doi.org/10.1023/A:1011378825628

22. Baharvandi H.R., Hadian A.M., Alizadex A. Processing and mechanical properties of boron carbide–titanium diboride ceramic matrix composites // Applied Composition Materials. 2006. Vol. 13. P. 191–198. http://doi.org/10.1007/s10443-006-9012-0

23. Mukhopadhyay A., Venkateswaran T., Bikramjit B. Spark plasma sintering may lead to phase instability and inferior mechanical properties: A case study with TiB 2 // Scripta Materialia. 2013. Vol. 69. No. 2. P. 159–164. http://doi.org/10.1016/j.scriptamat.2013.02.027

24. Gidikova N. Vanadium boride coatings on steel // Materials Science and Engineering: А. 2000. Vol. 278. No. 1-2. P. 181–186. http://doi.org/10.1016/S0921-5093(99)00596-1

25. Grigor’ev O.N., Galanov B.A., Kotenko V.A. Resistance of B 4 CVB 2 composites to abrasion and friction when paired with steel. Ogneupory i tekhnicheskaya keramika. 2005, no. 10, pp. 2–8. (In Russ.).

26. Grigorʼev O.N., Kovalʼchuk V.V., Zaporozhets O.I., Bega N.D., Galanov B.A., Prilutskii E.V., Kotenko V.A., Kutranʼ T.N., Dordienko N.A. Synthesis and physicomechanical properties of B4C–VB2 composites // Powder Metallurgy and Metal Ceramics. 2006. Vol. 45. No. 1-2. P. 47–58. http://doi.org/10.1007/s11106-006-0041-x

27. Trach Y., Schulze B., Makota O., Bulgakova L. The liquid-phase oxidation of olefins by molecular oxygen in the presence of metal borides and MoO // Journal of Molecular Catalysis A: Chemical. 2006. Vol. 258. 3 No. 1-2. P. 292–294. http://doi.org/10.1016/j.molcata.2006.05.069

28. Trach Y.B., Bulgakova L.V., Makota O.I., Suprun W.Ya., Schulze B., Stark C.B.W. Vanadium diboride catalyzed oxidation of cyclooctene by molecular oxygen: Kinetic study // Journal of Molecular Catalysis A: Chemical. 2009. Vol. 302. No. 1-2. P. 124–128. http://doi.org/10.1016/j.molcata.2008.12.008

29. Yu X., Light S. A novel high capacity, environmentally benign energy storage system: Super-iron boride battery // Journal of Power Sources. 2008. Vol. 179. No. 1. P. 407–411. http://doi.org/10.1016/j.jpowsour.2007.12.060

30. Gurin V.N. Methods of refractory compounds synthesis and prospects for their application to create new materials. Zhurnal VKhO im. D.I. Mendeleeva. 1979, vol. 24, no. 3, pp. 212–222. (In Russ.).

31. Merzhanov A.G., Borovinskaya I.P. Self-propagating high-temperature synthesis in chemistry and technology of refractory compounds. Zhurnal VKhO im. D.I. Mendeleeva. 1979, vol. 24, no. 3, pp. 223–227. (In Russ.).

32. Samsonov G.V Properties of Elements. Part 1. Physical Properties. Reference book. Samsonov G.V. ed. Moscow: Metallurgiya, 1976, 600 p. (In Russ.).

33. Samsonov G.V., Perminov V.P. Magnesiothermy. Moscow: Metallurgiya, 1971, 176 p. (In Russ.).

34. Physicochemical Properties of Oxides. Reference book. Samsonov G.V. ed. Moscow: Metallurgiya, 1978, 472 p. (In Russ.).

35. Kieffer R., Benesovsky F. Hartmetalle. Vienna: Springer-Verlag, 1965. (In Germ.) (Russ. ed.: Kieffer R., Benesovsky F. Tverdye materialy. Moscow: Metallurgiya, 1968, 384 p.) https://doi.org/10.1007/978-3-7091-8127-0

36. Kislyi P.S., Kuzenkova M.A., Bodnaruk N.I., Grabchuk B.L. Boron Carbide. Kiev: Naukova Dumka, 1988, 216 p. (In Russ.).

37. Popovich A.A., Reva V.P., Vasilenko V.N., Popovich T.A., Belous O.A. Mechanochemical method for obtaining powders of refractory compounds (Review). Poroshkovaya Metallurgiya. 1993, no. 2, pp. 37–43. (In Russ.).

38. Cirakoglu M., Bhaduri S., Bhaduri S.B. Combustion synthesis processing of functionally graded materials in the Ti–B binary system // Journal of Alloys and Compounds. 2002. Vol. 347. No. 1-2. P. 259–265. http://doi.org/10.1016/S0925-8388(02)00499-1

39. Hwang J., Lee J.K. Preparation of TiB 2 powders by mechanical alloying // Materials Letters. 2002. Vol. 54. No. 1. P. 1–7. http://doi.org/10.1016/S0167-577X(01)00526-2

40. Tang W.-M., Zheng Z.-X., Wu Y.-C., Wang J.-M., Lu J., Liu J.-W. Synthesis of TiB 2 nanocrystalline powder by mechanical alloying // Transactions of Nonferrous Metals Society of China. 2006. Vol. 16. No. 3. P. 613–617. http://doi.org/10.1016/S1003-6326(06)60108-8

41. Calka A., Oleszak D. Synthesis of TiB 2 by electric discharge assisted mechanical milling // Journal of Alloys and Compounds. 2007. Vol. 440. No. 1-2. P. 346–348. http://doi.org/10.1016/j.jallcom.2006.09.073

42. Makarenko G.N., Krushinskaya L.A., Timofeeva I.I., Matsera V.E., Vasil’kovskaya M.A., Uvarova I.V. Formation features of diborides of transition metals of IV–VI groups during mechanochemical synthesis. Poroshkovaya metallurgiya. 2014, no. 9/10, pp. 24–32. (In Russ.).

43. Peters J.S., Cook B.A., Harringa J.L., Russell A.M. Microstructure and wear resistance of low temperature hot pressed TiB 2 // Wear. 2009. Vol. 266. No. 11-12. P. 1171–1177. http://doi.org/10.1016/j.wear.2009.03.027

44. Tayeh T., Douin J., Jouannigot S., Zakhour M., Nakh M., Silvain J.-F., Bobet J.-L. Hardness and Young´s modulus behavior of Al composites reinforced by nanometric TiB 2 elaborated by mechanosynthesis // Materials Science and Engineering: A. 2014. Vol. 591. P. 1–8. http://doi.org/10.1016/j.msea.2013.10.065

45. Millet R., Hwang T. Preparation of TiB 2 and ZrB 2 . Influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia // Journal of Materials Science. 1996. Vol. 31. P. 351–355. http://doi.org/10.1007/BF01139151

46. Chen B., Yang L., Heng H., Chen J., Zhang L., Xu L., Qian Y., Yang J. Additive-assisted synthesis of boride, carbide and nitride micro/nanocrystals // Journal of Solid State Chemistry. 2012. Vol. 194. P. 219–224. http://doi.org/10.1016/j.jssc.2012.05.032

47. Smirnyagina N.N., Tsyrenzhapov B.B., Milonov A.S. Phase equilibria in the Me–B–C–O (Me = Ti, Zr, and V) systems. Russian Journal of Physical Chemistry A. 2006, vol. 80, no. 11, pp. 1855–1859.

48. Krishnarao R.V., Subrahmanyam J. Studies on the formation of TiB 2 through carbothermal reduction of TiO 2 and B 2 O 3 // Materials Science and Engineering: A. 2003. Vol. 362. No. 1-2. P. 145–151. https://doi.org/10.1016/S0921-5093(03)00523-9

49. Huang B., Chen S., Yao Z., Zhang M., Jing Y., Li B., Xiong W. Study of carbothermal synthesis of TiB 2 assisted by extended highenergy milling // Powder Technology. 2015. Vol. 275. P. 69–76. http://doi.org/10.1016/j.powtec.2014.12.025

50. Yu J., Ma L., Zhang Y., Gong H., Zhou L. Synthesis of TiB 2 powders via carbothermal reduction of TiO 2 , HBO 2 and carbon black // Ceramics International. 2016. Vol. 42. No. 4. P. 5512–5516. http://doi.org/10.1016/j.ceramint.2015.12.108

51. Kang S.H., Kim D.J. Synthesis of nano-titanium diboride powders by carbothermal reduction // Journal of the European Ceramic Society. 2007. Vol. 27. No. 2-3. Р. 715–718. http://doi.org/10.1016/j.jeurceramsoc.2006.04.053

52. Zhang H., Li F. Preparation and microstructure evolution of diboride ultrafine powder by sol-gel and microwave thermal reduction method // Journal of Sol-Gel Science and Technology. 2008. Vol. 45. No. 2. P. 205–211. http://doi.org/10.1007/s10971-007-1656-1

53. Kudaka K., Iizumi K., Izumi H., Sasaki T. Synthesis of titanium carbide and titanium diboride by mechanochemical displacement reaction // Journal of Materials Science Letters. 2001. Vol. 20. P. 1619–1622. http://doi.org/10.1023/A:1017906012176

54. Nekahi A., Firoozi S. Effect of KCl, NaCl and CaCl 2 mixture on volume combustion synthesis of TiB 2 nanoparticles // Materials Research Bulletin. 2011. Vol. 46. No. 9. P. 1377–1383. http://doi.org/10.1016/j.materresbull.2011.05.013

55. Nasiri-Tabrizi B., Adhami T., Ebrahimi-Kahrizsangi R. Effect of processing parameters on the formation of TiB 2 nanopowder by mechanically induced self-sustaining reaction // Ceramics International. 2014. Vol. 40. No. 5. P. 7345–7354. http://doi.org/10.1016/j.ceramint.2013.12.078

56. Zarrinpoor H., Firoozi S., V. Milani V. Ignition and chemical mechanisms of volume combustion synthesis of titanium diboride // Ceramics International. 2016. Vol. 42. No. 9. P. 11217–11223. http://doi.org/10.1016/j.ceramint.2016.04.032

57. Ipekçi M., Acar S., Elmadaĝli M., Hennicke J., Balci Ӧ., Somer M. Production of TiB 2 by SHS and HCl leaching at different temperatures: Characterization and investigation of sintering behavior by SPS // Ceramics International. 2017. Vol. 43. No. 2. P. 2039–2045. http://doi.org/10.1016/j.ceramint.2016.10.174

58. Javadi A., Pan S., Cao C., Yao G., Li X. Facile synthesis of 10 nm surface clean TiB 2 nanoparticles // Materials Letters. 2018. Vol. 229. P. 107–110. http://doi.org/10.1016/j.matlet.2018.06.054

59. Nozari A., Ataie A., Neshmati-Manesh S. Synthesis and characterization of nano-structured TiB 2 processed by milling assisted SHS route // Materials Characterization. 2012. Vol. 73. P. 96–103. http://doi.org/10.1016/j.matchar.2012.08.003

60. Zhou L., Yang L., Shao L., Chen B., Meng F., Qian Y., Xu L. General fabrication of boride, carbide and nitride nanocrystals via a metalhydrolysis-assisted process // Inorganic Chemistry. 2017. Vol. 56. No. 5. P. 2440–2447. http://doi.org/10.1021/acs.inorgchem.6b02501

61. Rao L., Gillan E.G., Kaner R.B. Rapid synthesis of transition-metal borides by solid-state metathesis // Journal of Materials Research. 1995. Vol. 10. No. 2. P. 353–361. http://doi.org/10.1557/JMR.1995.0353

62. Rabiezadeh A., Hadian A.M., Ataie A. Synthesis and sintering of TiB 2 nanoparticles // Ceramics International. 2014. Vol. 40. No. 10. Part A. P. 15775–15782. doi.org/10.1016/j.ceramint.2014.07.102

63. Kim J.W., Shim J.-H., Ahn J.-P., Cho Y.W., Kim J.-H., Oh K.H. Mechanochemical synthesis and characterization of TiB 2 and VB 2 nanopowders // Materials Letters. 2008. Vol. 62. No. 16. P. 2461–2464. http://doi.org/10.1016/j.matlet.2007.12.022

64. Karasev A.I. Production of powders of technical titanium, zirconium, chromium and tungsten borides by borocarbide method. Poroshkovaya metallurgiya. 1973, no. 10, pp. 1–5. (In Russ.).

65. GOST 5744 – 85. Materials grinding from boron carbide. Technical conditions. Moscow: Izdatel’stvo standartov, 1998, 12 p. (In Russ.).

66. GOST 7885 – 86. Technical carbon for rubber production. Technical conditions. Moscow: Izdatel’stvo standartov, 1987, 22 p. (In Russ.).

67. Levinskii Yu.V., Petrov A.P. Preparation of powders from doped titanium diboride. Poroshkovaya metallurgiya. 1993, no. 6, pp. 20–24. (In Russ.).

68. Subramanian C., Murthy T.S.R. Ch., Suri A.K. Synthesis and consolidation of titanium diboride // International Journal of Refractory Metals and Hard Materials. 2007. Vol. 25. No. 4. Р. 345–350. http://doi.org/10.1016/j.ijrmhm.2006.09.003

69. Fard H.S.P., Baharvandi H. Preparation of titanium diboride powders from titanium alkoxide and boron carbide powder // Bulletin of Materials Science. 2011. Vol. 34. Article 883. http://doi.org/10.1007/s12034-011-0209-y

70. Yu J., Ma L., Abbas A., Zhang Y., Gong H., Wang X., Zhou L., Liu H. Carbothermal reduction synthesis of TiB 2 ultrafine powders // Ceramics International. 2016. Vol. 42. No. 3. P. 3916–3920. http://doi.org/10.1016/j.ceramint.2015.11.059

71. Krutskii Yu.L., Bannov A.G., Antonova E.V., Sokolov V.V., Pichugin A.Yu., Maksimovskii E.A., Krutskaya T.M., Netskina O.V., Bataev I.A. Synthesis of fine dispersed titanium diboride from nanofibrous carbon // Ceramics International. 2017. Vol. 43. No. 3. P. 3212–3217. http://doi.org/10.1016/j.ceramint.2016.11.146

72. Kuvshinov G.G., Mogilnykh Yu.L., Kuvshinov D.G., Yermakov D. Yu., Yermakova M.A., Salanov A.N., Rudina N.A. Mechanism of porous filamentous carbon granule formation on catalytic hydrocarbon decomposition // Carbon. 1999. Vol. 37. No. 8. P. 1239–1246. http://doi.org/10.1016/S0008-6223(98)00320-0

73. Krutskii Yu.L., Nepochatov Yu.K., Pel’ A.N., Skovorodin I.N., Dyukova K.D., Krutskaya T.M., Kuchumova I.D., Matts O.E., Tyurin A.G., Emurlaeva Yu.Yu., Podryabinkin S.I. Synthesis of polydisperse boron carbide and synthesis of a ceramic on its basis. Russian Journal of Applied Chemistry. 2019, vol. 92, no. 6, pp. 750–758. http://doi.org/10.1134/S0044461819060045

74. Blott S.J., Pye K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments // Earth Surface Processes and Landforms. 2001. Vol. 26. No. 11. P. 1237–1248. http://doi.org/10.1002/esp.261

75. Saburov V.P., Cherepanov A.N., Zhukov M.F., Galevskii G.V., Krushenko G.G., Borisov V.T. Plasma­Chemical Synthesis of Ultrafine Powders and Their Application for the Modification of Metals and Alloys. Novosibirsk: Nauka, Sibirskaya izdatel’skaya firma RAN, 1995, 384 p. (In Russ.).

76. Cheng Y., Shigeta M., Choi S., Watanabe T. Formation mechanism of titanium diboride nanoparticles by RF induction thermal plasma // Chemical Engineering Journal. 2012. Vol. 183. P. 483–491. http://doi.org/10.1016/j.cej.2011.12.040

77. Yeh C.L., Wang H.J. Combustion synthesis of vanadium borides // Journal of Alloys and Compounds. 2011. Vol. 509. No. 7. P. 3257–3261. http://doi.org/10.1016/j.jallcom.2010.12.004

78. Rhodes C., Stuart J., Lopez R., Li X., Waje M., Mullings M., Lau J., Licht S. Evaluation of properties and performance of nanoscopic materials in vanadium diboride/air batteries // Journal of Power Sources. 2013. Vol. 293. P. 244–252. http://doi.org/10.1016/j.jpowsour.2013.03.071

79. Solov’ev N.E., Makarov V.S., Meshchaninova L.N., Ugai Ya.A. Interaction of oxides of 3d transition metals with boron // Journal of Alloys and Compounds. 1992. Vol. 178. No. 1-2. P. 131–138. http://doi.org/10.1016/0925-8388(92)90254-7

80. Smirnyagina N.N., Sizov I.G., Semenov A.P., Vandanov A.G. Thermodynamic analysis of vanadium borides synthesis on surface of carbon steels in vacuum. Fizika i khimiya obrabotki materialov. 2001, no. 2, pp. 63–67. (In Russ.).

81. Smirnyagina N.N., Sizov I.G., Semenov A.P. Thermodynamic modeling of the vacuum synthesis of transition-metal borides. Inorganic Materials. 2002, vol. 38, no. 1, pp. 39–44. http://10.1023/A:1013699326953

82. Markovskii L.Ya., Vekshina N.V., Bezruk E.T., Sukhareva G.E., Voevodskaya T.K. Magnesium-thermal method for obtaining metal borides. Poroshkovaya metallurgiya. 1969, no. 5, pp. 13–18. (In Russ.).

83. Shi L., Gu Y., Chen L., Yang Z., Ma J., Qian Y. Low-temperature synthesis of nanocrystalline vanadium diboride // Materials Letters. 2004. Vol. 58. No. 22-23. P. 2890–2892. http://doi.org/10.1016/j.matlet.2004.05.013

84. Meerson G.A., Samsonov G.V. Vacuum-thermal production of refractory metals borides. Zhurnal prikladnoi khimii. 1954, vol. 27, no. 10, pp. 1115–1120. (In Russ.).

85. Krutskii Yu.L., Maksimovskii E.A., Krutskaya T.M., Popov M.V., Netskina O.V., Nikulina A.A., Cherkasova N.Yu., Kvashina T.S. Synthesis of highly dispersed zirconium diboride for fabrication of special-purpose ceramic. Russian Journal of Applied Chemistry. 2017, vol. 90, no. 10, pp. 1579–1585. http://doi.org/10.1134/S1070427217100044


Review

For citations:


Krutskii Yu.L., Cherkasova N.Yu., Gudyma T.S., Netskina O.V., Krutskaya T.M. Diborides of transition metals: Properties, application and production. Review. Part 1. Titanium and vanadium diborides. Izvestiya. Ferrous Metallurgy. 2021;64(2):149-164. (In Russ.) https://doi.org/10.17073/0368-0797-2021-2-149-164

Views: 861


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)