Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Application of ionic theory to calculate sulfide capacity of slags

https://doi.org/10.17073/0368-0797-2021-2-104-111

Abstract

The article considers the issues of sulfur removal in the ladle-furnace unit. The sulfur distribution coefficient depends on sulfide capacity of the slag, sulfur activity coefficient, oxidizing potential of the medium and equilibrium constant. The sulfide capacity CS of slags is one of the most important characteristics of refining capacity of the slags used in extra-furnace steel processing. One of the factors affecting the sulfide capacity is temperature. The formula was proposed showing the dependence of sulfide capacity on the optical basicity and temperature, in the temperature range of 1650 – 1400 °C and when the optical basicity Λ is not more than 0.75; the error of the presented formula does not exceed 6 %. The formula for calculating the optical basicity is proposed, which takes into account the influence of basic, acidic oxides and amphoteric oxide Al2O3. It is shown that slags, completely consisting of a homogeneous phase, have an increased optical basicity of aluminum oxide. Heterogeneous slags have a reduced optical basicity of Al2O3 in comparison with homogeneous slags. Perhaps, this fact can be explained by the fact that in homogeneous slags there is a deficiency of the basic oxide CaO and in the conditions under consideration Al2O3 compound begins to exhibit more basic properties than acidic ones, thus, in homogeneous slags, the optical basicity of aluminum oxide is increased and approaches optical basicity of CaO oxide. Calculations carried out on the basis of real heats have shown that with an increase in the content of Al2O3 oxide in the slag, its optical basicity decreases. Known value of the optical basicity makes it possible to determine sulfide capacity of the slag, sulfur distribution coefficient between metal and slag, and, accordingly, final sulfur content in the metal. The research results have shown that it is advisable to apply the ionic theory of slags for the sulfide capacity determination.

About the Authors

A. A. Metelkin
Nizhny Tagil Technological Institute (branch), Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Anatolii A. Metelkin, Cand. Sci. (Eng.), Senior Lecturer of the Chair of Metallurgical Technology

59 Krasnogvardeiskaya str., Nizhny Tagil, Sverdlovsk Region 622031



O. Yu. Sheshukov
Ural Federal University named after the First President of Russia B.N. Yeltsin; Institute of Metallurgy, Ural Branch of the Russian Academy of Science (UB RAS)
Russian Federation

Oleg Yu. Sheshukov, Dr. Sci. (Eng.), Prof., Director of the Institute of New Materials and Technologies, Ural Federal University named after the First President of Russia B.N. Yeltsin, Chief researcher of the Laboratory “Pyrometallurgy of Ferrous Metals”, Institute of Metallurgy, Ural Branch of the Russian Academy of Science (UB RAS)

28 Mira str., Yekaterinburg 620002
101 Amundsena str., Yekaterinburg 620016



M. V. Savel’ev
JSC “Nizhny Tagil Iron and Steel Works”
Russian Federation

Maksim V. Savel’ev, Head of Prospective Development Department

1 Metallurgov str., Nizhny Tagil, Sverdlovsk Region 622005



O. I. Shevchenko
Nizhny Tagil Technological Institute (branch), Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Oleg I. Shevchenko, Dr. Sci. (Eng.), Prof., Head of the Chair of Metallurgical Technology

59 Krasnogvardeiskaya str., Nizhny Tagil, Sverdlovsk Region 622031



D. K. Egiazar’yan
Ural Federal University named after the First President of Russia B.N. Yeltsin; Institute of Metallurgy, Ural Branch of the Russian Academy of Science (UB RAS)
Russian Federation

Denis K. Egiazar’yan, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Metallurgy of Iron and Alloys”, Ural Federal University named after the First President of Russia B.N. Yeltsin, Senior Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science (UB RAS)

28 Mira str., Yekaterinburg 620002
101 Amundsena str., Yekaterinburg 620016



References

1. Bigeev A.M., Bigeev V.A. Steel Metallurgy. Theory and Technology of Steel Melting. Magnitogorsk: MSTU, 2000, 544 p. (In Russ.).

2. Yavoiskii V.I., Kryakovskii Yu.V., Grigor’ev V.P., Nechkin Yu.M., Kravchenko V.F., Borodin D.I. Steel Metallurgy. Moscow: Metallurgiya, 1983, 584 p. (In Russ.).

3. Knyuppel’ G. Deoxidation and Vacuum Treatment of Steel. Basics and Technology of Ladle Metallurgy. Moscow: Metallurgiya, 1984, 414 p. (In Russ.).

4. Fandrich R., Lüngen H., Wuppermann C. Actual review on secondary metallurgy // Revue de Metallurgie. Cahiers D’Informations Techniques. 2008. Vol. 7-8. No. 105. P. 364–374. http://doi.org/10.1051/metal:2008053

5. Fandrich R., Lungen H.B., Wuppermann C. Secondary metallurgy State of the art and research trends in Germany // Stahl und Eisen. 2008. Vol. 128. No. 2. P. 45–53.

6. Turkdogan E.T. Ladle deoxidation, desulphurisation and inclusions in steel – 1. Fundamentals // Archiv für das Eisenhüttenwesen. 1983. Vol. 1. No. 54. P. 1–10. http://doi.org/10.1002/srin.19830519

7. Pluschkell W. Metallurgical reaction techniques for adjusting very low contents of C, P, S and N in steel // Stahl und Eisen. 1990. Vol. 5. No. 110. P. 61–70.

8. Jonsson L., Sichen D., Jönsson P. A new approach to model sulphur refining in a gas-stirred ladle – A coupled CFD and thermodynamic model // ISIJ International. 1998. Vol. 3. No. 38. P. 260–267. http://doi.org/10.2355/isijinternational.38.260

9. Cao Q., Pitts A., Nastac L. Numerical modelling of fluid flow and desulphurisation kinetics in an argon-stirred ladle furnace // Ironmaking and Steelmaking. 2018. Vol. 45. No. 3. P. 280–287. http://doi.org/10.1080/03019233.2016.1262574

10. Shen C., Liping W., Junbo G., Yuanwang P., Fei H. Industrial investigation of decarburization and desulphurization behaviour of 120 t new single snorkel degasser // Ironmaking and Steelmaking. 2020. Vol. 47. No. 7. P. 713–721. http://doi.org/10.1080/03019233.2019.1580029

11. Agapitov E.B., Lemeshko M.A., Sokolova M.S. Prospects for the use of hollow electrodes for deep desulfurization of steel in the ladle-furnace unit // Materials Science Forum. 2020. No. 989 MSF. P. 474–479. http://doi.org/10.4028/www.scientific.net/MSF.989.474

12. Komolova O.A., Grigorovich K.V. Development of LF-software for modeling of rifining processes in a ladle–furnace // Journal of Physics: Conference Series. 2019. Vol. 1. No. 1347. Article 012066. http://doi.org/10.1088/1742-6596/1347/1/012066

13. Lin L., Hou Z.-X., Bao Y.-P., Wu Y.-X., Zhang L.-Q., Zeng J.Q. Gasification desulfurization and resource utilization of ladle furnace refining slag [LF精炼渣的气化脱硫及资源化利用] // Chinese Journal of Engineering. 2018. No. 40. P. 154–160. http://doi.org/10.13374/j.issn2095-9389.2018.s1.022

14. Socha L., Hudzieczek Z., Michalek K., Pilka V., Piegza Z. Verification of physical modelling of steel desulphurization in the plant conditions of the homogenization station. In: METAL 2014 – 23rd International Conference on Metallurgy and Materials, Conference Proceedings. 2014. P. 64–71.

15. Socha L., Bažan J., Gryc K., Morávka J., Styrnal P., Pilka V., Piegza Z. Optimisation of the slag mode in the ladle during the steel processing of secondary metallurgy // Materiali in Tehnologije. 2013. Vol. 5. No. 47. P. 673–678.

16. Adriana P., Teodor H., Lucia V., Vasile P. Research on desulphurization of steel with calcium aluminate synthetic slag with addition of titanium oxide. In: International Conference on Manufacturing Engineering, Quality and Production Systems, MEQAPS – Proceedings. 2011. P. 147–151.

17. Burmasov S.P., Gudov A.G., Yaroshenko Yu.G., Meling V.V., Dresvyakina L.E. The analysis of mass transfer in conditions of gas stirring at ladle refining of steel. Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 9, pp. 638–644. (In Russ.). http://doi.org/10.17073/0368-0797-2015-9-638-644

18. Popel’ S.I., Sotnikov A.I., Boronenkov V.N. Theory of Metallurgical Processes. Moscow: Metallurgiya, 1986, 463 p. (In Russ.).

19. Kazachkov E.A. Calculations to the Theory of Metallurgical Processes. Moscow: Metallurgiya, 1988, 288 p. (In Russ.).

20. Results of Science and Technology. Theory of Metallurgical Processes. Moscow: VINITI, 1987, 208 p. (In Russ.).

21. Korovin V.A., Leushin O.I., Palavin R.N., Kolganov V.N., Cherkasov S.V., Kostromin S.V. Extra-furnace processing and metal quality. Chernaya Metallurgiya. Byul. inta “Chermetinformatsiya”. 2009, no. 8, pp. 13–15. (In Russ.).

22. Sommerville I.D. Measurement, forecast and application of metallurgical slag capacities. In: Injection Metallurgy ‘86. Мoscow: Metallurgiya, 1990, pp. 107–120. (In Russ.).

23. Metelkin A.A., Sheshukov O.Yu., Savel’ev M.V., Shevchenko O.I., Egiazar’yan D.K. On steel desulfurization in a ladle-furnace unit. In: International Scientific Conference “Physical and Chemical Foundations of Metallurgical Processes” named after Academician A.M. Samarin. Moscow: IMET RAS, 2019, 128 p. (In Russ.).

24. Novikov V.K., Nevidimov V.N. Polymer Nature of Molten Slag. Yekaterinburg: USTU-UPI, 2006, 62 p. (In Russ.).

25. Sheshukov O.Yu., Mikheenkov M.A., Nekrasov I.V., Egiazar’yan D.K., Metelkin A.A., Shevchenko O.I. Utilization of Refining Slag from Steelmaking Production. Nizhnii Tagil: izd. NTI (branch) UrFU, 2017, 208 p. (In Russ.).

26. Sheshukov O.Yu., Nekrasov I.V., Bonar’ S.N., Egiazar’yan D.K., Tsymbalist M.M., Sivtsov A.V. Sulfide capacity of alumina slag from extra-furnace steel processing and oxygen anions activity. Chernaya Metallurgiya. Byul. inta “Chermetinformatsiya”. 2017, no. 2, pp. 30–33. (In Russ.).


Review

For citations:


Metelkin A.A., Sheshukov O.Yu., Savel’ev M.V., Shevchenko O.I., Egiazar’yan D.K. Application of ionic theory to calculate sulfide capacity of slags. Izvestiya. Ferrous Metallurgy. 2021;64(2):104-111. (In Russ.) https://doi.org/10.17073/0368-0797-2021-2-104-111

Views: 737


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)