Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Design features of thermal furnace with a drum mechanism for blanks transportation

https://doi.org/10.17073/0368-0797-2021-2-89-94

Abstract

One of the most energy-intensive industries is ferrous metallurgy. The metallurgical sector in industrially developed countries is reducing its specific energy consumption per one ton of products by approximately 1.0 – 1.5 % per annum. In Russia, obsolete technology is the main reason for the high-energy intensity of industrial product. Energy saving in industrial production is associated with production technology and the scope of fuel and energy resources consumption. Therefore, ways to improve energy efficiency focus on reducing energy consumption of any kind during a specific process in a specific process or thermal unit. Ensuring the economical operation of furnace units requires detailed preliminary and verification analyses, upgrading and introduction of state-of-the-art equipment. The study presents a flow diagram and features of thermal operation of a new drum-type chamber furnace for heating metal products for quenching. The technical parameters of the furnace, the results of the thermo-technical analysis, the heat balance and the specific fuel consumption as applicable to the created design are also presented. The flow diagram of the furnace has significant advantages in terms of the energy efficiency of fuel as compared to the roller and conveyor methods of metal transportation. Placing blanks on the drum significantly reduces the complexity of their transportation. Thanks to its small length the proposed design is compact and easy to place in a workshop. The use of a recuperative fuel burning device allows the efficient use of the heat of waste gases in the heating process. The proposed design and method of products transportation in the furnace working space can be used for the heat treatment of bars, pipes, strips, as well as rolled steel of various shapes.

About the Authors

N. A. Cheremiskina
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Nadezhda A. Cheremiskina, MA Student of the Chair “Thermal Physics and Informatics in Metallurgy”

19 Mira str., Yekaterinburg 620002



N. V. Shchukina
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Natal’ya V. Shchukina, MA Student of the Chair “Thermal Physics and Informatics in Metallurgy”

19 Mira str., Yekaterinburg 620002



N. B. Loshkarev
Ural Federal University named after the First President of Russia B.N. Yeltsin; OJSC “Scientific Research Institute of Metallurgical Heat Engineering” (“VNIIMT”)
Russian Federation

Nikolai B. Loshkarev, Cand. Sci. (Eng.), Assist. Prof. of the Chair “Thermal Physics and Informatics in Metallurgy”

19 Mira str., Yekaterinburg 620002
16 Studencheskaya str., Yekaterinburg 620137



V. V. Lavrov
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Vladislav V. Lavrov, Dr. Sci. (Eng.), Prof. of the Chair “Thermal Physics and Informatics in Metallurgy”

19 Mira str., Yekaterinburg 620002



References

1. Volkov E.P., Prokhorov V.B., Arkhipov A.M., Kirichkov V.S., Kaverin A.A. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction // Journal of Physics: Conference Series. 2017. Vol. 891. No. 1. Article 012220. http://doi.org/10.1088/1742-6596/891/1/012220

2. Anshakov A.S., Aliferov A.I., Sinitsyn V.A., Domarov P.V. Simulation of heat and mass transfer in a shaft of plasma electric furnace, when utilizing technogeneous wastes // Journal of Physics: Conference Series. 2017. Vol. 899. No. 9. Article 092003. http://doi.org/10.1088/1742-6596/899/9/092000

3. Matyukhin V.I., Yaroshenko Y.G., Matyukhina A.V., Dudko V.A., Punenkov S.E. The use of natural gas for heating of shaft furnaces of cupola type to increase the technological processes efficiency of pig iron smelting. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 8, pp. 629–636. (In Russ.). http://doi.org/10.17073/0368-0797-2017-8-629-636

4. Vasserman A.A., Shutenko M.A. Methods of increasing thermal efficiency of steam and gas turbine plants // Journal of Physics: Conference Series. 2017. Vol. 891. No. 1. Article 012248. http://doi.org/10.1088/1742-6596/891/1/012248

5. Giovannoni V., Sharma R.N., Raine R.R. Thermal performances of a small-scale regenerative combustion chamber for ultra-micro gas turbine // Combustion Science and Technology. 2017. Vol. 189. No. 11. P. 1859 – 1877. http://doi.org/10.1080/00102202.2017.1333986

6. Sai Varun V., Tejesh P., Prashanth B.N. Design and development of tilting rotary furnace // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 310. No. 1. Article 012084. http://doi.org/10.1088/1757-899X/310/1/012084

7. Jabari F., Mohammadi-ivatloo B., Bannae Sharifian M.B., Nojavan S. Design and robust optimization of a novel industrial continuous heat treatment furnace // Energy. 2018. Vol. 142. P. 896–910.http://doi.org/10.1016/j.energy.2017.10.096

8. Seo M.-J., Yoo J.-C. Lab-on-a-Disc platform for automated chemical cell lysis // Sensors (Switzerland). 2018. Vol. 18. No. 3. Article 687. http://doi.org/10.3390/s18030687

9. Akhlaghi M., Tayebifard S.A., Salahi E., Shahedi A.M., Schmidt G. Self-propagating high-temperature synthesis of Ti3AlC2MAX phase from mechanically-activated Ti/Al/graphite powder mixture // Ceramics International. 2018. Vol. 44. No. 8. P. 9671–9678. http://doi.org/10.1016/j.ceramint.2018.02.195

10. Xue Y., Yu B., Li W., Feng Sh., Wang Yu., Huang Sh., Zhang C., Qiao Z. Effect of annealing atmosphere on properties of Cu 2 ZnSn(S, Se) 4 films // Superlattices and Microstructures. 2017. Vol. 112. P. 311–317. http://doi.org/10.1016/j.spmi.2017.09.036

11. Bu Y.-K. Study on design and operation of cyclohexanone wastewater incineration waste heat boiler // Petrochemical Equipment. 2017. Vol. 46. No. 6. P. 18–23. http://doi.org/10.3969/j.issn.1000-7466.2017.06.004

12. Shu Q., Liu J., Lan X., Long L., Yang J., Wang C., Yang Y. Correction analysis for the deviation between vacuum furnace and material growth temperatures // Vacuum. 2017. Vol. 144. P. 21–26. http://doi.org/10.1016/j.vacuum.2017.07.006

13. Bessada C., Zanghi D., Pauvert O., Maksoud L., Gil-Martin A., Sarou-Kanian V., Melin P., Brassamin S., Nezu A., Matsuura H. High temperature EXAFS experiments in molten actinide fluorides: The challenge of a triple containment cell for radioactive and aggressive liquids // Journal of Nuclear Materials. 2017. Vol. 494. P. 192–199. http://doi.org/10.1016/j.jnucmat.2017.07.023

14. Sobota T. Improving steam boiler operation by on-line monitoring of the strength and thermal performance // Heat Transfer Engineering. 2018. Vol. 39. No. 13-14. P. 1260–1271. http://doi.org/10.1080/01457632.2017.1363641

15. Dzierwa P., Taler D., Trojan M., Taler J. Optimum Heating of Boiler Evaporator // Heat Transfer Engineering. 2018. Vol. 39. No. 13-14. P. 1217–1226. http://doi.org/10.1080/01457632.2017.1363630

16. Zhang N., Li Z., Zheng J., Yang X., Shen K., Zhou T., Zhang Y. Multielemental analysis of botanical samples by ICP-OES and ICP-MS with focused infrared lightwave ashing for sample preparation // Microchemical Journal. 2017. Vol. 134. P. 68–77. http://doi.org/10.1016/j.microc.2017.05.006

17. Motyl P., Łach J. Numerical analysis for the low-emission dual fuel combustion in a boiler type OP-230 // European Biomass Conference and Exhibition Proceedings. 2017. Vol. 2017. No. 25 th EUBCE. P. 666–679. https://doi.org/10.5071/25theubce2017-2bv.1.44

18. Fiedler T., Groß R., Rösler J., Bäker M. Damage mechanisms of metallic HVOF-coatings for high heat flux application // Surface and Coatings Technology. 2017. Vol. 316. P. 219–225. http://doi.org/10.1016/j.surfcoat.2017.03.037

19. Cong H., Zhao L., Yao Z., Meng H., Jia J., Li X., Wang Y. Energy balance analysis of corn straw continuous distillation // Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering. 2017. Vol. 33. No. 7. P. 206–212. http://doi.org/10.11975/j.issn.1002-6819.2017.07.027

20. Wang L., Zhu B., Wang Q., Zhang Y. Modeling of hot stamping process procedure based on finite state machine (FSM) // International Journal of Advanced Manufacturing Technology. 2017. Vol. 89. No. 1-4. P. 857–868. http://doi.org/10.1007/s00170-016-9097-z

21. Kitaev B.I., Zobnin B.F., Ratnikov V.F. etc. Heat Engineering Calculations of Metallurgical Furnaces. Telegin A.S. ed. Moscow: Metallurgiya, 1970, 528 p. (In Russ.).

22. Zobnin B.F., Kazyaev M.D., Kitaev B.I. Thermal Engineering Calculations of Metallurgical Furnaces. Moscow: Metallurgiya, 1982, 360 p. (In Russ.).

23. Gushchin S.N., Zainullin L.A., Kazyaev M.D., Yur’ev B.P., Yaroshenko Yu.G. Fuel and Calculations of its Combustion. Yaroshenko Yu.G. ed. Yekaterinburg: USTU-UPI, 2007, 105 p. (In Russ.).

24. Vargaftik N.B. Reference Book on Thermophysical Properties of Gases and Liquids. Moscow: Nauka, 1972, 721 p. (In Russ.).

25. Sovetkin V.L., Fedyaeva L.A. Thermophysical Properties of Substances. Sverdlovsk: UPI, 1990, 101 p. (In Russ.).

26. Kazantsev E.I. Industrial Furnaces. Reference Guide for Calculation and Design. Moscow: Metallurgiya, 1975, 368 p. (In Russ.).


Review

For citations:


Cheremiskina N.A., Shchukina N.V., Loshkarev N.B., Lavrov V.V. Design features of thermal furnace with a drum mechanism for blanks transportation. Izvestiya. Ferrous Metallurgy. 2021;64(2):89-94. (In Russ.) https://doi.org/10.17073/0368-0797-2021-2-89-94

Views: 430


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)