Thermodynamic modeling of metal reduction from melts of high-iron oxidized nickel ore
https://doi.org/10.17073/0368-0797-2021-1-46-51
Abstract
About the Authors
A. S. VusikhisRussian Federation
Aleksandr S. Vusikhis, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Pyrometallurgy of Non-Ferrous Metals
101, Amundsena str., Yekaterinburg 620016
E. N. Selivanov
Russian Federation
Evgenii N. Selivanov, Dr. Sci. (Eng.), Head of the Laboratory of Pyrometallurgy of Non-Ferrous Metals
101, Amundsena str., Yekaterinburg 620016
S. V. Sergeeva
Russian Federation
Svetlana V. Sergeeva, Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Pyrometallurgy of Non-Ferrous Metals
101, Amundsena str., Yekaterinburg 620016
L. I. Leont’ev
Russian Federation
Leopol'd I. Leont'ev Dr. Sci. (Eng.), Academician, Adviser of RAS, Prof., Chief Researcher, Institute of Metallurgy, National University of Science and Technology "MISIS”
101, Amundsena str., Yekaterinburg 620016
4, Leninskii ave., Moscow 119049
32a, Leninskii ave., Moscow 119991
References
1. Leont’ev L.I., Vatolin N.A., Shavrin S.V., Shumakov N.S. Pyrometallurgical Processing of Complex Ores. Moscow: Metallurgiya, 1997, 432 p. (In Russ.).
2. Yucel O., Turan A., Yildirim H. Investigation of pyrometallurgical nickel pig iron (NPI) production process from lateritic ores. In: 3rd Int. Symposium on High Temperature Processing, TMS (The Minerals, Metals & Material Society). 2012, pp. 17–23.
3. Yildirim H., Morcali M.H., Turan A., Yucel O. Nickel pig iron production from lateritic nickel ores. In: 13 th Int. Ferroalloys Congress, Almaty, Kazakhstan, June 2013, pp 237–244.
4. Kruger P., Silva C.A., Vieira C.B., Araujo F.G.S., Seshadri V. Relevant aspects related to production of iron nickel alloys (pig iron containing nickel) in mini blast furnaces. In: 12 th Int. Ferroalloys Congress, Sustainable Future, Helsinki, Finland, June 6 – 9, 2010, pp. 671–681.
5. Turan A., Yucel O., Yildirim H. Nickel pig iron (NPI) production from domestic lateritic nickel ores using induction furnace. In: Int. Iron & Steel Symposium, Karabuk, Turkey, April 2012, pp 337–344.
6. Reznik I.D., Ermakov G.P., Shneerson Ya.M. Nickel. Vol. 2. Moscow: Nauka i tekhnika, 2001, 468 p. (In Russ.).
7. Kotze I.J. Pilot plant production of ferronickel from nickel oxide ores and dusts in a DC arc furnace. Minerals Engineering. 2002, vol. 15, no. 11, pp. 1017–1022. https://doi.org/10.1016/S0892-6875(02)00127-9
8. Tarasov A.V., Paretskii V.M. Modern role of electric melting in production of heavy non-ferrous metals. Elektrometallurgiya. 2003, no. 5, pp. 12–23. (In Russ.).
9. Reynolds Q.G., Jones R.T. Semi-empirical modelling of the electrical behavior of DC-arc smelting furnaces. Journal of the South African Institute of Mining and Metallurgy. 2004, no. 6, pp. 1–7.
10. Keskinkilic E. Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route. Metals. 2019, vol. 9, no. 9, pp. 974–990. https://doi.org/10.3390/met9090974
11. Kovgan P.A., Abuov M.G., Edil’baev A.I. Promising technologies for processing poor oxidized nickel ores. Tsvetnye metally. 2008, no. 2, pp. 43–45. (In Russ.).
12. Tsymbulov L.B., Knyazev M.V., Tsemekhman L.Sh., Kudabaev E.A., Golovlyov Yu.I. Analysis of various variants of processing of oxidized nickel ores into ferronickel using a two-zone Vanyukov furnace. Tsvetnye metally. 2010, no. 10, pp. 15–21. (In Russ.).
13. Bystrov V.P., Fedorov A.N., Shchelkunov V.V., Bystrov S.V. Using the Vanyukov process for processing oxidized nickel ores. Tsvetnye metally. 2011, no. 8-9, pp. 155–158. (In Russ.).
14. Bakker M.L., Nikolic S., Mackey P.J. ISASMELT™ TSL applications for nickel. Minerals Engineering. 2011, vol. 24, no. 7, pp. 610–619. https://doi.org/10.1016/j.mineng.2010.09.016
15. Krasheninnikov M.V., Marshuk L.A., Leont’ev L.I. Selective reduction of nickel from oxide melt. Rasplavy. 1998, no. 4, pp. 45–48. (In Russ.).
16. Vatolin N.A., Moiseev G.K., Trusov B.G. Thermodynamic Modeling in High Temperature Inorganic Systems. Moscow: Metallurgiya, 1994, 352 p. (In Russ.).
17. Belov G.V., Trusov B.G. Thermodynamic Modeling of Chemically Reacting Systems. Moscow: MGTU, 2013, 96 p. (In Russ.).
18. Pickles C.A., Harris C.T., Peacey J., Forster J. Thermodynamic analysis of the Fe–Ni–Co–Mg–Si–O–H–S–C–Cl system for selective sulphidation of a nickeliferous limonitic laterite ore. Mineral Engineering. 2013, vol. 54, pp. 52–62. https://doi.org/10.1016/j.mineng.2013.03.029
19. Sohn H.Y. Process modeling in non-ferrous metallurgy. In: Treatise on Process Metallurgy: Industrial Processes. Oxford: Elsevier Ltd., 2014, Chapter 2.4, pp. 701–838.
20. Elliott R., Pickles C.A., Forster J. Thermodynamics of the reduction roasting of nickeliferous laterite ores. Journal of Minerals and Materials Characterization and Engineering. 2016, no. 4, pp. 320–346. https://doi.org/10.4236/jmmce.2016.46028
21. Vusikhis A.S., Dmitriev A.N., Kudinov D.Z., Leontiev L.I. The study of liquid and gas phases interaction during the reduction of metal oxides from the melts by gas reductant in bubbled layer. 3 rd Int. Conf. on Mathematical Modeling and Computer Simulation of Materials Technologies (MMT-2004), Ariel, Israel. 2004, pp. 1_72–77.
22. Dmitriev A., Leontiev L, Vusikhis A., Kudinov D. Liquid and gas interactio during reduction in bubbled layer. European Metallurgical Conf. EMC’2005, Dresden, Germany, September 18 – 21, 2005. Vol. 3, pp. 1349–1358.
23. Slag Atlas. 2 nd ed. Düsseldorf: Verlag Stahleisen GmdH, 1995, 616 p.
24. Raynor G.V., Rivlin V.G. Co–Fe–Ni in Phase Equilibria in Iron Ternary Alloys. London: Inst. Metals, 1988, pp. 247–255.
Review
For citations:
Vusikhis A.S., Selivanov E.N., Sergeeva S.V., Leont’ev L.I. Thermodynamic modeling of metal reduction from melts of high-iron oxidized nickel ore. Izvestiya. Ferrous Metallurgy. 2021;64(1):46-51. (In Russ.) https://doi.org/10.17073/0368-0797-2021-1-46-51