Deformation behavior of high-entropy alloy system Al – Co – Cr – Fe – Ni achieved by wire-arc additive manufacturing
https://doi.org/10.17073/0368-0797-2021-1-68-74
Abstract
Keywords
About the Authors
Yu. F. IvanovRussian Federation
Yurii F. Ivanov, Dr. Sci. (Phys.-Math.), Prof., Siberian State Industrial University, Chief Researcher, Institute of High Current Electronics
42, Kirova str., Novokuznetsk, Kemerovo Region – Kuzbass, 654007
2/3, Akademicheskii ave., Tomsk 634021
K. A. Osintsev
Russian Federation
Kirill A. Osintsev, Postgraduate of the Chair of Metals Technology and Aviation Materials, Siberian State Industrial University, Samara National Research University
42, Kirova str., Novokuznetsk, Kemerovo Region – Kuzbass, 654007
34, Moskovskoe route, Samara 443086
V. E. Gromov
Russian Federation
Viktor E. Gromov, Dr. Sci. (Phys.-Math.), Prof., Head of the Chair of Science named after V.M. Finkel’
42, Kirova str., Novokuznetsk, Kemerovo Region – Kuzbass, 654007
S. V. Konovalov
Russian Federation
Sergei V. Konovalov, Dr. Sci. (Eng.), Prof., Siberian State Industrial University Head of the Chair of Metals Technology and Aviation Materials, Samara National Research University
42, Kirova str., Novokuznetsk, Kemerovo Region – Kuzbass, 654007
34, Moskovskoe route, Samara 443086
I. A. Panchenko
Russian Federation
Irina A. Panchenko, Cand. Sci. (Eng.), Assist. Prof. of the Chair of Quality Management and Innovation
42, Kirova str., Novokuznetsk, Kemerovo Region – Kuzbass, 654007
References
1. Lim X. Mixed-up metals make for stronger, tougher, stretchier alloys. Nature. 2016, vol. 533, no. 7603, pp. 306–307. https://doi.org/10.1038/533306a
2. Li Z., Pradeep K.G., Deng Y., Raabe D., Tasan C.C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016, vol. 534, no. 7606, pp. 227–230. https://doi.org/10.1038/nature17981
3. Shaysultanov D., Stepanov N., Malopheyev S., Vysotskiy I., Sanin V., Mironov S., Kaibyshev R., Salishchev G., Zherebtsov S. Friction stir welding of a сarbon-doped CoCrFeNiMn high-entropy alloy. Materials Characterization. 2018, vol. 145, pp. 353–361. https://doi.org/10.1016/j.matchar.2018.08.063
4. Jin B., Zhang N., Yu H., Hao D., Ma Y. Alx CoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance. Surface and Coatings Technology. 2020, vol. 402, article 126328. https://doi.org/10.1016/j.surfcoat.2020.126328
5. Pogrebnjak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V.M. The structure and properties of high-entropy alloys and nitride coatings based on them. Russian Chemical Reviews. 2014, vol. 83, no. 11, pp. 1027–1061. https://doi.org/10.1070/RCR4407
6. Klimova M., Shaysultanov D.G., Semenyuk A., Zherebtsov S. Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys. Journal of Alloys and Compounds. 2020, vol. 851, article 156839. https://doi.org/10.1016/j.jallcom.2020.156839
7. Yeh J.-W., Chen S.-K., Lin S.-J.,Chin T.‐S., Shun T.‐T., Tsau C.‐H., Chang S.‐Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials. 2004, vol. 6, no 5, pp. 299–303. https://doi.org/10.1002/adem.200300567
8. Godlewska E.M., Mitoraj-Królikowska M., Czerski J., Jawańska M., Gein S., Hecht U. Corrosion of Al(Co)CrFeNi High-Entropy Alloys. Frontiers in Materials. 2020, vol. 7, article 566336. https://doi.org/10.3389/fmats.2020.566336
9. Zhang Y., Zuo T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Progress in Materials Science. 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
10. Uporov S.A., Ryltsev R.E., Bykov V.A., Estemirova S.Kh., Zamyatin D.A. Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy. Journal of Alloys and Compounds. 2020, vol. 820, article 153228. https://doi.org/10.1016/j.jallcom.2019.153228
11. Rogal L., Szklarz Z., Bobrowski P., Kalita D., Garzel G., Tarasek A., Kot M., Szlezynger M. Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy. Metals and Materials Int. 2019, vol. 25, no. 4, pp. 930–945. https://doi.org/10.1007/s12540-018-00236-5
12. Su Y., Luo S., Wang Z. Microstructure evolution and cracking behaviors of additively manufactured Al x CrCuFeNi 2 high entropy alloys via selective laser melting. Journal of Alloys and Compounds. 2020, vol. 842, article 155823. https://doi.org/10.1016/j.jallcom.2020.155823
13. Shen Q., Kong X., Chen X. Fabrication of bulk Al–Co–Cr–Fe–Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties. Journal of Materials Science and Technology. 2021, vol. 74, pp. 136–142. https://doi.org/10.1016/j.jmst.2020.10.037
14. Chen X., Su C., Wang Y., Siddiquee A.N., Konovalov S., Sing R.A. Cold metal transfer (CMT) based wire and arc additive manufacture (WAAM) system. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2018, vol. 12, no. 6, pp. 1278–1284. https://doi.org/10.1134/S102745101901004X
15. Liu K., Chen X., Shen Q., Pan Z., Singh R.A., Jayalakshmi S., Konovalov S. Microstructural evolution and mechanical properties of deep cryogenic treated Cu–Al–Si alloy fabricated by Cold Metal Transfer (CMT) process. Materials Characterization. 2020, vol. 159, article 110011. https://doi.org/10.1016/j.matchar.2019.110011
16. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.TQ., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018, vol. 143, pp. 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
17. Panin A.V., Kazachenok M.S. Panin S.V., Berto F. Scale levels of quasi-static and dynamic fracture behavior of Ti-6Al-4V parts built by various additive manufacturing methods. Theoretical and Applied Fracture Mechanics. 2020, vol. 110, article 102781. https://doi.org/10.1016/j.tafmec.2020.102781
18. Konovalov S., Osintsev K., Golubeva A., Smelov V., Ivanov Yu., Chena X., Komissarova I. Surface modification of Ti-based alloy by selective laser melting of Ni-based superalloy powder. Journal of Materials Research and Technology. 2020, vol. 9, no. 4, pp. 8796–8807. https://doi.org/10.1016/j.jmrt.2020.06.016
19. Sistla H.R., Newkirk J.W., Liou F.F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of Al x FeCoCrNi 2–x (x = 0.3, 1) high entropy alloys. Materials and Design. 2015, vol. 81, pp. 113–121. https://doi.org/10.1016/J.MATDES.2015.05.027
20. Brooks C.R., McGill B.L. The application of scanning electron microscopy to fractography. Materials Characterization. 1994, vol. 33, no. 3, pp. 195–243. https://doi.org/10.1016/1044-5803(94)90045-0
Review
For citations:
Ivanov Yu.F., Osintsev K.A., Gromov V.E., Konovalov S.V., Panchenko I.A. Deformation behavior of high-entropy alloy system Al – Co – Cr – Fe – Ni achieved by wire-arc additive manufacturing. Izvestiya. Ferrous Metallurgy. 2021;64(1):68-74. (In Russ.) https://doi.org/10.17073/0368-0797-2021-1-68-74