Nitriding during powder production and study of the structure of EP741NP alloy doped with nitrogen
https://doi.org/10.17073/0368-0797-2021-1-59-67
Abstract
About the Authors
V. D. KatolikovRussian Federation
Vladimir D. Katolikov, Postgraduate of the Chair of Metallurgy of Steel, New Production Technologies and Metal Protection
4, Leninskii ave., Moscow 119049
I. A. Logachev
Russian Federation
Ivan A. Logachev, Cand. Sci. (Eng.), Leading Engineer of the Laboratory of Hybrid Additive Technologies
4, Leninskii ave., Moscow 119049
O. A. Komolova
Russian Federation
Ol'ga A. Komolova, Cand. Sci. (Eng.), Assist. Prof. of the Chair of Metallurgy of Steel, New Production Technologies and Metal Protection, National University of Science and Technology "MISIS", Senior Researcher of the Laboratory of Materials Diagnostics, Baikov Institute of Metallurgy and Materials Science, RAS
4, Leninskii ave., Moscow 119049
49, Leninskii ave., Moscow 119991
M. V. Zheleznyi
Russian Federation
Mark V. Zheleznyi, Research Engineer of the Laboratory of Materials Diagnostics, Baikov Institute of Metallurgy and Materials Science, RAS, Postgraduate, National University of Science and Technology "MISIS"
4, Leninskii ave., Moscow 119049
49, Leninskii ave., Moscow 119991
A. E. Semin
Russian Federation
Aleksandr E. Semin, Dr. Sci. (Eng.), Prof. of the Chair of Metallurgy of Steel, New Production Technologies and Metal Protection
4, Leninskii ave., Moscow 119049
References
1. Kawagishi K., Sato A., Kobayashi T., Harada H. Oxidation properties for 2 nd – 5 th generation Ni-base single-crystal superalloys at 1023, 1173 and 1373 K. Journal of the Japan Institute of Metals and Materials. 2007, vol. 71, no. 3, pp. 313–319. https://doi.org/10.2320/jinstmet.71.313
2. Yokokawa T., Koizumi Y., Kobayashi T., Harada H. Effect of Re and Ru additions to second generation nickel-base single crystal superalloy TMS-82+. Journal of the Japan Institute of Metals and Materials. 2006, vol. 70, no. 8, pp. 670–673. https://doi.org/10.2320/jinstmet.70.670
3. Oinuma S., Takaku R., Nakatani Y., Takeyama M. Creep degradation mechanism and creep damage assessment based on hardness method of precipitation strengthened wrought Ni-based superalloy. Zairyo /Journal of the Society of Materials Science, Japan. 2019, vol. 68, no. 9, pp. 673–679. https://doi.org/10.2472/jsms.68.673
4. Miura H. Direct laser forming of titanium alloy powders for medical and aerospace applications. KONA Powder and Practical Journal. 2015, vol. 32, pp. 253–263. https://doi.org/10.14356/kona.2015017
5. Kyogoku H., Ikeshoji Toshi-Taka. A review of metal additive manufacturing technologies: mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process. Mechanical Engineering Reviews. 2020, vol. 7, no. 1, article 19-00182. https://doi.org/10.1299/mer.19-00182
6. Zhang Qi, Zheng-long Liang, Miao Cao, Zi-fan Liu, An-feng Zhang, Bing-heng Lu. Microstructure and mechanical properties of Ti6Al4V alloy prepared by selective laser melting combined with precision forging. Transactions of Nonferrous Metals Society of China. 2017, vol. 27, no. 5, pp. 1036–1042. https://doi.org/10.1016/S1003-6326(17)60121-3
7. Alkahari M.R., Furumoto T., Ueda T., Hosokawa A. Consolidation characteristics of ferrous-based metal powder in additive manufacturing. Journal of Mechanical Design, Systems and Manufacturing. 2014, vol. 8, no. 1, article JAMDSM0009. https://doi.org/10.1299/jamdsm.2014jamdsm0009
8. Araki M., Kusakawa S., Nakamura K., Yonehara M., Ikeshoji ToshiTaka, Kyogoku H. Parameter optimization on the fabrication of Al–10Si–0,4Mg alloy using selective laser melting process. Journal of the Japan Society of Powder and Powder Metallurgy. 2018, vol. 65, no. 7, pp. 383–388. https://doi.org/10.2497/jjspm.65.383
9. Spowart E.J., Gupta N., Lehmhus D. Additive manufacturing of composites and complex materials. JOM. 2018, vol. 70, no. 3, pp. 272–274. https://doi.org/10.1007/s11837-018-2742-2
10. Chen B., Moon S.K., Yao X., Bi G., Shen J., Umeda J., Kondoh K. Comparison study on additive manufacturing (AM) and powder metallurgy (PM) AlSi10Mg alloys. JOM. 2018, vol. 70, no. 5, pp. 644–649. https://doi.org/10.1007/s11837-018-2793-4
11. Qian M. Metal powder for additive manufacturing. JOM. 2015, vol. 67, no. 3, pp. 536–537. https://doi.org/10.1007/s11837-015-1321-z
12. Rock C., Lara-Curzio E., Ellis B., Ledford C., Donovan N.L., Kannan R., Kirka M., Horn T. Additive manufacturing of pure Mo and Mo plus TiC MMC alloy by electron beam powder bed fusion. JOM. 2020, vol. 72, no. 12, pp. 4202–4212. https://doi.org/10.1007/s11837-020-04442-8
13. Sato N., Nakano S., Nagahari T., Nagoya T., Kakehi K. Microstructure of nickel-based superalloy fabricated by selective laser melting in vacuum. Journal of the Japan Society of Powder and Powder Metallurgy. 2020, vol. 67, no. 3, pp. 121–124. https://doi.org/10.2497/jjspm.67.121
14. Mihara R. Net shape HIP technology for rocket engine parts. Journal of the Japan Society of Powder and Powder Metallurgy. 2019, vol. 66, no. 8, pp. 391–394. https://doi.org/10.2497/jjspm.66.391
15. Hirata T., Kimura T., Nakamoto T. Effect of hot isostatic pressing on Al–10%Si–0,4%Mg alloy fabricated by selective laser melting. Journal of the Japan Society of Powder and Powder Metallurgy. 2019, vol. 66, no. 1, pp. 29–36. https://doi.org/10.2497/jjspm.66.29
16. Watanabe K. New technology introduction of the HIP equipment. Journal of the Japan Society of Powder and Powder Metallurgy. 2019, vol. 66, no. 1, pp. 25–28. https://doi.org/10.1007/978-94-011-2900-8_76
17. Tsvetkov E.V., Bazaleeva K.O., Chekin I.S., Klimova-Korsmik O.G., Zhidkov A.S. Nitriding of steels of various structural classes manufactured by laser additive technologies. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 1, pp. 63–70. (In Russ.). https://doi.org/10.17073/0368-0797-2020-1-63-70
18. Kostina M.V., Rigina L.G. Nitrogen-containing steels and methods of their production. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 8 pp. 606–622. (In Russ.). https://doi.org/10.17073/0368-0797-2020-8-606-622
19. Minagawa K., Liu Y., Kakisawa H., Halada K. Production of fine metallic powders by hybrid atomization process. JSME Int. Journal Series A: Solid Mechanics and Material Engineering. 2003, vol. 46, no. 3, pp. 260–264. https://doi.org/10.1299/jsmea.46.260
20. Sentyurina Zh.A. Production of spherical powders from nickel aluminide-based alloys NiAl for additive technologies: Cand. Sci. diss. Moscow: 2016, 168 p. (In Russ.).
21. Logacheva A.I. Integrated technology for manufacture of thinwalled elements by powder metallurgy for the production of parts from structural alloys based on titanium and nickel for rocket and space technology: Dr. Sci. diss. Moscow: 2016, 408 p. (In Russ.).
22. Lykov P.A., Roshchin V.E., Vorob’ev E.I. Influence of the process parameters of metal melts sputtering on the powder granulometric composition and shape of its particles. Izvestiya. Ferrous Metallurgy. 2012, vol. 55, no. 6, pp. 21–23. (In Russ.).
23. Rudskoi A.I., Sokolov Yu.A., Kopaev V.N. Modeling of granules manufacture by PREP method. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. 2015, no. 1 (214), pp. 123–129. (In Russ.).
24. Gammal T., Randa Abdel-Karim., Marc Tell Walter., Wosch E., Feldhaus S. High nitrogen steel powder for the production of near net shape parts. ISIJ International. 1996, vol. 36, no. 7, pp. 915–921. https://doi.org/10.2355/isijinternational.36.915
25. Katolikov V.D., Logachev I.A., Shchukina L.E., Semin A.E. Thermodynamics of nitrogen solubility in nickel-based alloys at plasma-arc remelting. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 3-4, pp. 231–237. (In Russ.). https://doi.org/10.17073/0368-0797-2020-3-4-231-237
Review
For citations:
Katolikov V.D., Logachev I.A., Komolova O.A., Zheleznyi M.V., Semin A.E. Nitriding during powder production and study of the structure of EP741NP alloy doped with nitrogen. Izvestiya. Ferrous Metallurgy. 2021;64(1):59-67. (In Russ.) https://doi.org/10.17073/0368-0797-2021-1-59-67