Influence of cross-screw rolling modes on mechanical properties and fracture toughness of pipe steel
https://doi.org/10.17073/0368-0797-2021-1-28-37
Abstract
Keywords
About the Authors
N. S. SurikovaRussian Federation
Natal'ya S. Surikova, Dr. Sci. (Phys.–Math.), Assist. Prof., Senior Researcher
2/3, Akademicheskii ave., Tomsk 634021
I. V. Vlasov
Russian Federation
Il'ya V. Vlasov, Cand. Sci. (Eng.), Research Associate of the Laboratory of Physical Mesomechanics and Non-Destructive Testing
2/3, Akademicheskii ave., Tomsk 634021
L. S. Derevyagina
Russian Federation
Lyudmila S. Derevyagina, Dr. Sci. (Phys.–Math.), Leading Researcher
2/3, Akademicheskii ave., Tomsk 634021
A. I. Gordienko
Russian Federation
Antonina I. Gordienko, Cand. Sci. (Eng.), Research Associate
2/3, Akademicheskii ave., Tomsk 634021
N. A. Narkevich
Russian Federation
Natal'ya A. Narkevich, Cand. Sci. (Eng.), Senior Researcher
2/3, Akademicheskii ave., Tomsk 634021
References
1. Rybin V.V., Malyshevskii V.A., Khlusova E.I. Structure and properties of cold resistant steels for northern operating. Voprosy materialovedeniya. 2006, no. 1 (45), pp. 24–44. (In Russ.).
2. Gorynin I.V., Rybin V.V., Malyshevskii V.A., Khlusova E.I. Cold-resistant steels for Arctic shelf development equipment. Voprosy materialovedeniya. 2009, no. 3 (59), pp. 108–126. (In Russ.).
3. Chzhao F., Chzhao L. Bainitic steels with ultra-low carbon content and prospects for their application. Voprosy materialovedeniya. 2008, no. 1 (53), pp. 52–61. (In Russ.).
4. Tian Y., Wang H.T., Wang Z.D., Misra R.D.K., Wang G.D. Microstructural evolution and the precipitation behavior in X90 linepipe steel during isothermal processing. Journal of Materials Engineering and Performance. 2018, vol. 27, no. 4, pp. 1494–1504. https://doi.org/10.1007/s11665-018-3197-x
5. Mishin I.P., Naydenkin E.V, Ratochka I.V., Lykova O.N., Manisheva A.I. Study of the effect of combined rolling with subsequent aging on structure and mechanical properties of near β titanium alloy. AIP Conference Proceedings. 2019, vol. 2167, article 020230. https://doi.org/10.1063/1.5132097
6. Naizabekov A.B., Leznev S.N., Arbuz A.S. The effect of radialshear rolling on the microstructure and mechanical properties of technical titanium. Solid State Phenomena. 2020, vol. 299, pp. 565–570. https://doi.org/10.4028/www.scientific.net/SSP.299.565
7. Ivanov K.V., Naidenkin E.V., Lykova O.N., Ratochka I.V., Mishin I.P., Vinokurov V.A. Structure evolution and mechanical properties of a Ti-6Al-4V alloy during helical rolling and subsequent deformation and heat treatments. Russian Physics Journal. 2017, vol. 60, no. 7, pp. 1226–1232. https://doi.org/10.1007/s11182-0171199-z
8. Surikova N.S., Panin V.E., Narkevich N.A., Mishin I.P., Gordienko A.I. Formation of a multilevel hierarchical mesosubstructure by cross rolling and its influence on the mechanical behavior of austenitic steel. Physical Mesomechanics. 2018, vol. 21, no. 5, pp. 430–440. https://doi.org/10.1134/S1029959918050077
9. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Recrystallization of Metals and Alloys. Moscow: NUST “MISIS”, 2005, 432 p. (In Russ.).
10. Schastlivtsev V.M., Tabachnikova T.I., Yakovleva I.L., Kruglova A.A., Khlusova E.I., Orlov V.V. Features of bainite structure in low-carbon welded steels after thermomechanical treatment. Voprosy materialovedeniya. 2009, no. 3 (59), pp. 26–38. (In Russ.).
11. Jun Hu, Lin-Xiu Du, Hui Xie, Peng Yu, Misra R.D.K. A nanograined/ultrafine-grained low-carbon microalloyed steel processed by warm rolling. Materials Science and Engineering: A. 2014, vol. 605, pp. 186–191. https://doi.org/10.1016/j.msea.2014.03.064
12. Hohenwarter A., Kapp M.W., Volker B, Renk O., Pippan R. Strength and ductility of heavily deformed pearlitic microstructures. IOP Conference Series: Materials Science and Engineering. 2017, vol. 219, article 012003. https://doi.org/10.1088/1757899X/219/1/012003
13. Li Y.J., Kang J., Zhang W.N., Liu D., Wang X.H., Yuan G., Misra R.D.K., Wang G.D. A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels. Materials Science & Engineering: A. 2018, vol. 710, pp. 181–191. https://doi.org/10.1016/j.msea.2017.10.104
14. Schastlivtsev V.M., Yakovleva I.L., Tereshchenko N.A., Kurban V.V., Kornilov V.L., Salganik V.M., Pesin A.M. Main structural factors of strengthening of low-carbon low-alloy pipe steels after controlled rolling. Metal Science and Heat Treatment. 2009, vol. 51, no. 1-2, pp. 40–44.
15. Ghosh S., Mula S. Thermomechanical processing of low carbon Nb-Ti stabilized microalloyed steel: Microstructure and mechanical properties. Materials Science and Engineering: A. 2015, vol. 646, pp. 218–233. https://doi.org/10.1016/j.msea.2015.08.072
16. Tian J., Xu G., Liang W., Yuan Q. Effect of annealing on the microstructure and mechanical properties of low-carbon steel with ultrafine grains. Metallography, Microstructure and Analysis. 2017, vol. 6, no. 3, pp. 233–239. https://doi.org/10.1007/s13632-017-0350-0
17. Ravi A.M., Kumar A., Herbi M., Sietsma J., Santofimia M.J. Impact of austenite grain boundaries and ferrite nucleation on bainite formation in steels. Acta Materialia. 2020, vol. 188, pp. 424–434. https://doi.org/10.1016/j.actamat.2020.01.065
18. Shamsujjoha M. Evolution of microstructures, dislocation density and arrangement during deformation of low carbon lath martensitic steels. Materials Science and Engineering: A. 2020, vol. 776, article 139039. https://doi.org/10.1016/j.msea.2020.139039
19. Eres-Castellanos A., Caballero F.G., Garcia-Mateo C. Stress or strain induced martensitic and bainitic transformations during ausforming processes. Acta Materialia. 2020, vol. 189, pp. 60–72. https://doi.org/10.1016/j.actamat.2020.03.002
20. Yakovleva S.P., Makharova S.N., Borisova M.Z. Structure, properties and fracture features of low alloy steel in submicrocrystalline state. Metally. 2006, no. 4, pp. 71–78. (In Russ.).
21. Farber V.M., Khotinov V.A., Morozova A.N., Lezhnin N.V., Martin T. Diagnosis of fractures and energy intensity of viscous fracture during instrumental tests for impact bending. Metal Science and Heat Treatment. 2015, vol. 57, no. 5-6, pp. 329–333.
22. Khotinov V.A., Faber V.M., Morozova A.N. Evaluating the toughness of pipe steels by impact fracture curves. Diagnostics, Resource and Mechanics of materials and structures. 2015, no. 2, pp. 57–66. (In Russ.).
23. Faber V.M., Khotinov V.A., Morozova A.N., Selivanova O.V., Polukhina O.N., Karabanalov M.S. Study of the breakage region of high ductility steel 08G2B Charpy specimen fracture. Metal Science and Heat Treatment. 2018, vol. 60, no. 5-6, pp. 348–353. https://doi.org/10.1007/s11041-018-0282-6
Review
For citations:
Surikova N.S., Vlasov I.V., Derevyagina L.S., Gordienko A.I., Narkevich N.A. Influence of cross-screw rolling modes on mechanical properties and fracture toughness of pipe steel. Izvestiya. Ferrous Metallurgy. 2021;64(1):28-37. (In Russ.) https://doi.org/10.17073/0368-0797-2021-1-28-37