Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Thermodynamic analysis of chromium reduction from oxide Cr2O3

https://doi.org/10.17073/0368-0797-2020-11-12-935-945

Abstract

Thermodynamic analysis of chromium reduction from its oxide in gas phase Н2 – Н2О – СО – СО2 in contact with carbon was performed. Oxidation potential (pO2 ) was determined by two nomograms in the coordinates

 

and

 

taking into account condition normalizations xH2O + xH2 + xCO2+ xCO = 1. In calculations, possible parameters of reduction of chromium from Cr2O3 oxide were determined by ratio of dissociation elasticity of the oxide and oxidation potential of the gas phase. In the СО – СО2 – С system, chromium is reduced at temperature of 1505 K if xCO > 0.9995. At this temperature, Cr2O3 compound is reduced in water gas of the following composition xH2 = 0.0186, xH2O = 0.28·10–4, xCO = 0.9809, xCO2 = 4.86·10–4, for which the oxidation potential is equal to dissociation elasticity of oxide

 

With an increase in hydrogen concentration from 0.0186 to 0.99, oxidation potential of water gas in contact with carbon decreases by four orders of magnitude to

 

This should lead to a significant increase in reduction rate. In such a gaseous atmosphere, it is possible to reduce chromium at temperature of 1230 K. It is technologically simple to obtain reducing water gas and at the lowest cost, for example, by heating water vapor in contact with carbon. It is shown that at temperature of 1500 K water gas is obtained with traces of Н2О and СО2 compounds with parameters xH2 = 0.4999, xCO = 0.4996,

 

 

Oxidizing potential of such a gas is less than that of chromium oxide, and this difference significantly increases with increasing temperature.

About the Authors

Yu. S. Kuznetsov
South Ural State University
Russian Federation

Cand. Sci. (Eng.), Professor of the Chair of Materials Science and Physical Chemistry of Materials

Chelyabinsk



O. I. Kachurina
South Ural State University
Russian Federation

Cand. Sci. (Chem.), Assist. Professor of the Chair of Theoretical and Applied Chemistry

Chelyabinsk



References

1. Waldenstram M., Uhrenius B. A thermodynamic analysis of the Fe – Cr – C. Scandinavian Journal of Metallurgy. 1977, vol. 6, no. 5, pp. 202–210.

2. Kaufman L., Nesor H. Coupled phase diagrams and thermochemical data for transition metal binary system IV. CALPHAD. 1988, vol. 12, no. 3, pp. 225–246.

3. Herzman S., Sandman B. A thermodynamic analysis of the Fe–Cr. CALPHAD. 1982, vol. 6, no. 1, pp. 67–80.

4. Andersson J-O. A thermodynamic evaluation of the Fe–Cr–C system. Metallurgical Transactions A. 1988, vol. 19A, no. 1-6, pp. 627–636.

5. Perspektivy razvitiya metallurgii i mashinostroeniya s ispol’zovaniem zavershennykh fundamental’nykh issledovanii i NIOKR: Ferrosplavy. IV-ya mezhdunarodnaya nauchno-prakticheskaya konferentsiya [Prospects for Development of Metallurgy and Mechanical Engineering using Completed Fundamental Research and R&D: Ferroalloys. IV Int. Sci. and Pract. Conference]. Ekaterinburg: Al’fa print, 2018, 460 p. (In Russ.).

6. Bondarenko B.I. Vosstanovlenie oksidov metallov v slozhnykh gazovykh sistemakh [Reduction of Metal Oxides in Complex Gas Systems]. Kiev: Naukova dumka, 1980, 388 p. (In Russ.).

7. Chernobrovin V.P., Pashkeev I.Yu., Mikhailov G.G. etc. Teoreticheskie osnovy protsessov proizvodstva uglerodistogo ferrokhroma iz ural’skikh rud [Theoretical Foundations of Carbon Ferrochrome Production from the Ural Ores]. Chelyabinsk: YuUrGU, 2004, 346 p. (In Russ.).

8. Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. Termodinamika metallurgicheskikh protsessov i sistem [Thermodynamics of Metallurgical Processes and Systems]. Moscow: MISiS, 2009, 520 p. (In Russ.).

9. Kazachkov E.A. Raschety po teorii metallurgicheskikh protsessov [Calculations based on Theory of Metallurgical Processes]. Moscow: Metallurgiya, 1988, 288 p. (In Russ.).

10. Kulikov I.S. Termodinamika oksidov [Thermodynamics of Oxides]. Moscow: Metallurgiya, 1986, 342 p. (In Russ.).

11. Holzheid A., O’Neill H. The Cr–Cr2O3 oxygen buffer and the free energy of formation of Cr2O3 from high – temperature electrochemical measurement. Geochimica et Cosmochimica Acta. 1995, vol. 59, no. 3, pp. 475–479.

12. Toker N.Y., Darken L.S., Muan А. Equilibrium phase relation and thermodynamics of the Cr–O system in the temperature range of 1500 to 1825 °C. Metallurgical Transactions B. 1991, vol. 22, no. 2, pp. 225–232.

13. Kubaschewski O., Alcock C.B. Metallurgical Thermochemistry. New York; Oxford: Pergamon Press, 1967, 392 p.

14. Steelmaking Data Sourcebook. The Japan Society for the Promotion of Science. The 19th Committee on Steelmaking. Switzerland: Gordon and Breach Science Publishers, 1988, 326 p.

15. Muan A., Osborn E.F. Phase Eqilibria among Oxides in Steelmaking. New York: Pergamon Press Limited, 1965, 236 p.

16. Vyatkin G.P., Kuznetsov Yu.S., Mikhailov G.G., Kachurina O.I. Termodinamika vosstanovleniya zheleza iz oksidov [Thermodynamics of Iron Reduction from Oxides]. Chelyabinsk: YuUrGU, 2017, 346 p. (In Russ.).

17. Pripisnov O.N. Sintez kompozitsionnykh materialov na osnove karbidov khroma s primeneniem predvaritel’noi mekhanoaktivatsii: avtoref. dis... kand. tekh. nauk [Synthesis of composite materials based on chromium carbides using preliminary mechanical activation: Extended Abstract of Cand. Sci. Diss.]. Moscow: MISiS, 2015, 28 p. (In Russ.).

18. Nozdrin I.V. Razrabotka nauchnykh osnov i tekhnologii plazmometallurgicheskogo proizvodstva nanoporoshkov borida i karbida khroma: avtoref. dis….dokt. tekhn. nauk [Development of scientific foundations and technology for plasma metallurgical production of boride and chromium carbide nanopowders: Extended Abstract of Dr. Sci. Diss.]. Novokuznetsk: SibGIU, 2015, 42 p. (In Russ.).

19. Berkane R., Gachon J.C., Charles J., Hortz J. A thermodynamic study of the chromium – carbon system. CALPHAD. 1987, vol. 11, no. 2, pp. 152–159.

20. Maluchi H., Sano N., Matsushita Y. The standard free energy of formation of Cr3C2 by the electromotive force method. Metallurgical Transactions. 1971, vol. 2, no. 6, pp. 1503–1506.

21. Shatynski S.R. Thermochemistry of transition metal carbides. Oxidation of Metals. 1979, vol. 3, no. 2, pp. 105–118.

22. Celtters R.G., Belton G.R. High temperature thermodynamic properties of the chromium carbides Cr7C3 and Cr3C2 determined using a galvanic cell technique. Metallurgical Transactions B. 1985, vol. 15, no. 4, pp. 517–521.

23. Strokina I.V., Yakushevich N.F. Changes in redox properties of gaseous phase of C – O2 – H2 system. Izvestiya. Ferrous Metallurgy. 2011, vol. 54, no. 6, pp. 3–5. (In Russ.).

24. Kuznetsov Yu.S., Kachurina O.I. Redox properties of gas phase (On the article of Strokina I.V., Yakushevich N.F. Changes in redox properties of gaseous phase of C – O2 – H2 system. Izvestiya. Ferrous Metallurgy. 2011, no. 6, pp. 3–5). Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 1, pp. 69–79. (In Russ.).

25. Grishin A.M., Simonov V.K., Shcheglova I.S. On the disparity of kinetic laws to thermodynamics preconditions of reactions of carbon gasification by Н2О and СО2 . Izvestiya. Ferrous Metallurgy. 2013, vol. 56, no. 7, pp. 64–67. (In Russ.).


Review

For citations:


Kuznetsov Yu.S., Kachurina O.I. Thermodynamic analysis of chromium reduction from oxide Cr2O3. Izvestiya. Ferrous Metallurgy. 2020;63(11-12):935-945. (In Russ.) https://doi.org/10.17073/0368-0797-2020-11-12-935-945

Views: 1061


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)