Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Development of composition and process of obtaining multicomponent ferroalloys

https://doi.org/10.17073/0368-0797-2020-10-791-795

Abstract

The main product of ferroalloy plants is standard ferroalloys. They often do not have all the necessary service characteristics and are not very suitable for metal processing in a ladle. The developing progressive technology of steelmaking is forced to adapt to the existing range of ferroalloys, the standards for which have not been updated for 50 years or more. In addition, in recent years, the sources and markets of ferroalloy raw materials have changed, and their quality and content of leading elements have decreased. This makes it difficult or excludes the possibility of obtaining ferroalloys according to existing standards. In this regard, the production of more efficient ferroalloys of a new generation is required, suitable for progressive processes in the developing areas of ferrous and non-ferrous metallurgy 795 and smelted from non-traditional types of domestic ore raw materials. These include complex or multicomponent ferroalloys containing, in addition to iron, two or more functional elements. Complex ferroalloys should be created in the most favorable combinations of component. It contributes to the necessary effective impact on the iron-carbon melt with a high degree of assimilation of useful elements in it. The creation of scientific foundations for the formation of new compositions of multicomponent ferroalloys with high consumer properties, and the development of physicochemical processes for obtaining these alloys from unconventional ore raw materials contributes to solving the problems of developing compositions of effective new generation ferroalloys and expanding the ore base of ferroalloy production. When using the developed method of designing the composition of complex ferroalloys using unconventional raw materials, melting technologies were developed; various alloys of the systems were obtained and applied on a laboratory and industrial scale: Fe – Si – Cr, Fe – Si – B, Fe – Si – Ba – Ca, Fe – Si – Al – Nb, Fe – Si – Ca – Mg, Fe – Si – V – Ca – Mn, Fe – Si – Al.

About the Authors

V. I. Zhuchkov
Institute of Metallurgy of the UB RAS
Russian Federation

Dr. Sci. (Eng.), Professor, Chief Researcher

Ekaterinburg



O. V. Zayakin
Institute of Metallurgy of the UB RAS
Russian Federation

Zhuchkov, Dr. Sci. (Eng.), Professor, Chief Researcher O.V. Zayakin, Dr. Sci. (Eng.), Chief Researcher

Ekaterinburg



References

1. Holappa L., Louhenkilpi S. On the role of ferroalloys in steelmaking. INFACON: The Efficient Technologies in Ferroalloy Industry. Karaganda: “P. Dipner”, 2013, pp. 1083–1090.

2. Pariser H.H., Backeberg N.R., Masson O.C.M., Bedder J.C.M. Changing nickel and chromium stainless steel markets. In: INFACON XV: Int. Ferro-Alloys Congress. R.T. Jones & P. den Hoed eds. 2018. Available at URL: https://www.pyrometallurgy.co.za/InfaconXV/0001-Pariser.pdf.

3. Cobb H.H. The history of stainless steels. ASM International. 2010, pp. 17–24.

4. Krüger P., Silva C.A., Batista Vieira C., Araújo F.G.S., Seshadri V. Relevant aspects related to production of iron nickel alloys (pig iron containing nickel) in mini blast furnaces. Proceedings of the 12th Int. Ferroalloy Congress, Helsinki, Finland. Vol. 1. Outotec Oyj, 2010, pp. 671–680.

5. Ferroalloy market in 2017–2018: production in Russia. Metal Research. Available at URL: http://www.metalresearch.ru/ferroalloys_market_2017-2018.html (In Russ.).

6. Zhuchkov V.I., Leont’ev L.I., Zayakin O.V. Application of Russian ore raw materials to ferroalloys production. Izvestiya. Ferrous Metallurgy. 2020, vol. 50, no. 3-4, pp. 211–217. (In Russ.).

7. Esenzhulov A.B., Ostrovskii Ya. I., Afanas’ev V. I., Zayakin O.V., Zhuchkov V.I. Russian chromium ore in smelting high-carbon ferrochrome at OAO SZF. Steel in Translation. 2008, vol. 38, no. 4, pp. 315–317.

8. Tolymbekova L.B., Kim A.S., Zhunusov A.K., Babenko A.A. Thermal transformations in manganese ores in the Zapadnyi Kamys deposit and charge materials used to produce in an air flow under nonisothermal conditions. Metallurgist. 2013, vol. 56, pp. 919–924.

9. Gasik M.I., Gladkikh V.A., Zhdanov A.V. etc. Calculation of the value of manganese ore raw materials. Elektrometallurgiya. 2009, no. 8, pp. 756–758.

10. Akuov А., Samuratov Ye., Kelamanov B., Zhumagaliyev Y., Taizhigitova M. Development of an alternative technology for the production of refined ferrochrome. Metallurgija. 2020, vol 59, no. 4, pp. 529–532.

11. Samuratov Ye., Kelamanov B., Akuov А., Zhumagaliyev Y., Akhmetova M. Smelting standard grades of manganese ferroalloys from agglomerated thermo-magnetic manganese concentrates. Metallurgija. 2020, vol. 59, no. 1, pp. 85–88.

12. Alex T.C., Godiwalla K.M., Kumar S., Jana R.K. Extraction of silicomanganese from marine and low grade mineral resources. INFACON XI. India, New Delhi, 2007, pp. 206–214.

13. Yessengaliyev D., Baisanov S., Issagulov A., Baisanov A., Zayakin O., Abdirashit A. Thermodynamic diagram analysis (TDA) of MnO–CaO–Аl2O3–SiO2 and phase composition of slag in refined ferromanganese production. Metalurgija. 2019, vol. 58, no. 3-4, pp. 291–294.

14. Zhuchkov V.I., Zayakin O.V., Leont’ev L.I. etc. Main trends in the processing of poor chrome ore raw materials. Elektrometallurgiya. 2008, no. 8, pp. 709–712. (In Russ.).

15. Stroganov A.I. Requirements for ferroalloys for deoxidation and alloying. In: Proizvodstvo ferrosplavov: Sb. Sibirskogo metallurgicheskogo instituta [Production of ferroalloys: Digest of Siberian Metallurgical Institute]. Novokuznetsk: Izd. KuzPI, 1980, pp. 5–24. (In Russ.).

16. Spanov S.S., Zhunusov A.K., Tolymbekova L.B. Pilot plant melting of steel using ferro-silico-aluminum at KSP Steel. Mеtallurgist. 2017, vol. 60, no. 11-12, pp. 1149–1154.

17. Ringdalen E., Ostrovski O., Gaal S. Ore properties in melting and reduction reactions in silicomanganese production. Proceedings of the 12th Int. Ferroalloy Congress, Helsinki, Finland. Vol. 1. Outotec Oyj, 2010, pp. 487–496.

18. Boyarko G.Yu., Khat’kov V.Yu. Commercial streams of ferroalloys in Russia. Chernye metally. 2018, no. 3, рр. 60–63. (In Russ.).

19. Andreev N.A., Zhuchkov V.I., Zayakin O.V. Density of chromiumcontaining ferroalloys. Elektrometallurgiya. 2013, no. 6, pp. 418–419. (In Russ.).

20. Zhuniskaliyev T., Nurumgaliyev A., Zayakin O., Mukhambetgaliyev Y., Kuatbay Y., Mukhambetkaliyev A. Investigation and comparison of the softening temperature of manganese ores used for the production of complex ligatures based on Fe–Si–Mn–Al. Metalurgija. 2020, vol. 59, no. 4, pp. 449–592.

21. Tolymbekov M., Kelamanov B., Baisanov A., Kaskin K. Processing Kazakhstan’s chromonickel ore. Steel in Translation. 2008, vol. 38, no. 8, pp. 58–55.


Review

For citations:


Zhuchkov V.I., Zayakin O.V. Development of composition and process of obtaining multicomponent ferroalloys. Izvestiya. Ferrous Metallurgy. 2020;63(10):791-795. (In Russ.) https://doi.org/10.17073/0368-0797-2020-10-791-795

Views: 578


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)