From the history of nitrided ferroalloys
https://doi.org/10.17073/0368-0797-2020-10-773-781
Abstract
The article considers research on the history of nitrided ferroalloys appearance and development of technologies for nitrogen-containing steels and ligatures. The most important advantages of nitrogen as an alloying element are its availability and almost unlimited reserves in nature. The technology of nitrogen extraction does not cause any harm to the environment and is not accompanied by the formation of waste. New technologies of nitrided ferroalloys and new compositions of nitrogen-containing ligatures emerged as a response to the creation of new grades of nitrogen-alloyed steels. At the same time, researchers in Europe, the United States, and the Soviet Union made the greatest contribution to the development of nitrided steel and ferroalloys technology. Nitrided ferrochrome emerged from the need for alloying stainless steels of various classes. Nitrided ferrovanadium was created for microalloying high-strength low-alloy steels. For nitrogen alloying of transformer steel, an alloying material based on silicon nitride was developed. Nitrogen-containing compositions based on manganese are universal alloying materials for a wide range of applications. Technologies of nitrided ferroalloys developed in the direction of creating compositions with the maximum nitrogen content with minimal consumption of material resources. Currently, technologies for direct introduction of nitrogen gas into liquid metal during out-of-furnace processing are being successfully developed. Alloying with its solid carriers remains a universal method for smelting nitrogen-containing steels. Nitrogen in nature occurs exclusively in a gaseous form, so for introduction to steel, it is necessary to fix it in the composition of a solid substance. At the same time, such a nitrogen-containing material must be compatible with the steel melt and technological in use. This problem is completely solved by the technology of self-propagating high-temperature synthesis (SHS), which allows obtaining composite ferroalloys based on nitrides, with properties that are unattainable for the furnace process.
About the Author
M. Kh. ZiatdinovRussian Federation
Dr. Sci. (Eng.), Leading Researcher of the Laboratory of High-Energy Materials
References
1. Chizhevskii N.P., Privalov I. Iron and nitrogen. Vestnik tekhnologii khimicheskoi i stroitel’nykh materialov. 1910, no. 5-6, pp. 97–104. (In Russ.).
2. Chizhevskii N.P. Iron and nitrogen. Experimental study of the amount of nitrogen and the causes of its content in cast iron, steel and iron. Izv. Tomskogo tekhnologicheskogo instituta. 1913, vol. 31, no. 3, pp. 1–91. (In Russ.).
3. Tschischewski N.P. The occurrence and influence of nitrogen on iron and steel. The Journal of the Iron and Steel Institute. 1915, vol. 92, no. 2, pp. 47–97.
4. Braune H. Über die Bedeutung des Stickstoffes im Eisen. Stahl und Eisen. 1906, no. 22, S. 1357–1363; no. 23, S. 1431–1437; no. 24, S. 1496–1499. (In Germ.).
5. Svechnikov V.N. Nitrogen in the technical iron. Zhurnal Russkogo metallurgicheskogo obshchestva. 1928, no. 1, Part 1, pp. 36–58. (In Russ.).
6. Scott F.W. Effect of nitrogen on steel. Industrial and Engineering Chemistry. 1931, vol. 23, no. 9, pp. 1036–1051.
7. Veinberg G.Ya., Proshutinskii S. Nitrogen in steel. Metallurg. 1938, no. 2, pp. 95–103. (In Russ.).
8. Adcock F. The effect of nitrogen on chromium and some iron – chromium alloys. The Journal of the Iron and Steel Institute. 1926, vol. 114, no. 11, pp. 117–126.
9. Franks R. Chromium steels improved by nitrogen. The Iron Age. 1933, no. 7, pp. 10–13.
10. Franks R., Heighs J. Alloy Steel. Pat. 1990 589 US. Publ. 12.02.1935.
11. Franks R., Heighs J. Method of Producing Chromium Steel Castings. Pat. 1990 591 US. Publ. 12.02.1935.
12. Rapatz F. Verwendungsmöglichkeiten von nichtrostenden und hitzebeständigen Stählen mit Stickstoffzusatz. Stahl und Eisen. 1941, B. 61, no. 48, S. 1073-78. (In Germ.).
13. Chizhevskii N.P., Blinov N. Titanium, vanadium, and nitrogen. Effect of titanium and vanadium on nitrogen content in iron and its alloys. ZhRMO. 1914, no. 5, Part 1, pp. 636–646. (In Russ.).
14. Grishchenko S.G., Matvienko V.A., Sarankin V.A. etc. Development of technology for the production of nitrided ferrovanadium at the Zaporozhye Ferroalloy Plant. Stal’. 1982, no. 7, pp. 42-44. (In Russ.).
15. Read W.C. Process for Making Alloys. Pat. 2027837 US. Publ. 14.01.1936.
16. Ostrofsky J.N. Production of Ferroalloy. Pat. 2058494 US. Publ. 27.10.1936.
17. Arness W.B. Method of Producing Iron Chromium Alloys of Appreciable Nitrogen Content. Pat. 2069205 US. Publ. 2.02.1937.
18. Jackson P.L., Zackay V.F. Process of Preparing an Iron Base Melt. Pat. 2745740 US. Publ. 15.05.1956.
19. Comstock G.F. Method of Incorporating Nitrogen in Alloy Steels. Pat. 2098567 US. Publ. 9.11.1937.
20. Comstock G.F. Incorporating nitrogen in chromium steels by titanium tyanonitride. Metal Progress. 1938, vol. 33, no. 3, pp. 269–274.
21. Emel’yanov V.S. Effect of nitrogen on steel properties. Kachestvennaya stal’. 1935, no. 5, pp. 40–48. (In Russ.).
22. Samarin A.M., Korolev M.L. Experiments on nitrogen saturation of ferrochrome. Metallurg. 1938, no. 2, pp. 77–84. (In Russ.).
23. Samarin A.M., Korolev M.L., Paisov I.V. Effect of nitrogen on chromium-containing alloys. Metallurg. 1938, no. 11, pp. 80–85. (In Russ.).
24. Samarin A.M., Yaskevich A., Paisov I.V. Effect of nitrogen on the properties of stainless steel. Izv. AN SSSR, OTN. 1943, no. 5-6, pp. 71–77. (In Russ.).
25. Samarin A.M. Replacing nickel with nitrogen in heat-resistant steel. Izv. AN SSSR, OTN. 1944, no. 1-2, pp. 54–57. (In Russ.).
26. Samarin A.M. Properties of nitrogen-containing stainless steel. Izv. AN SSSR, OTN. 1944, no. 12, pp. 858–863. (In Russ.).
27. Samarin A.M., Filippov S.I. Sposob vnepechnoi vyplavki azotistogo ferrokhroma [Method of extra-furnace smelting of nitrogenous ferrochrome]. Certificate of authorship SSSR no. 71095. Publ. 08.02.1946. (In Russ.).
28. Mozgovoi V.S., Samarin A.M. Solubility of nitrogen in liquid chromium and melts of chromium and silicon. Izv. AN SSSR. OTN. 1950, no. 10, pp. 1529–1536. (In Russ.).
29. Mozgovoi V.S., Samarin A.M. Solubility of nitrogen in melts of chromium and carbon, chromium and iron, chromium, iron and carbon. In: Fiziko-khimicheskie osnovy proizvodstva stali [Physicochemical Basics of Steel Production]. Moscow: Iz-vo AN SSSR, 1957, pp. 586–589. (In Russ.).
30. Ignatenko G.F., Pliner Yu.L., Lappo S.I. etc. Technology for smelting high-nitrogen carbon-free ferrochrome using the aluminothermic method. Stal’. 1960, no. 9, pp. 817–818. (In Russ.).
31. Jennings P.A. High-Temperature Steel. Pat. 2602738 US. Publ. 08.07.1952.
32. Zackay V.F., Carlson J.F., Jackson P.L. High nitrogen austenitic Cr–Mn steels. Transaction ASM. 1955, vol. 48, pp. 509–523.
33. Vitkina E.I. Some steels and alloys of new grades used abroad in the post-war years. In: Chernaya metallurgiya kapitallisticheskikh stran [Ferrous Metallurgy of Capitalistic Countries]. Part V. Moscow: Metallurgizdat, 1957, pp. 5–58. (In Russ.).
34. Erasmus H. de W. Production of Ferrochromium. Pat. 2473019 US. Publ. 14.06.1949.
35. Cooper H.S. Method for Producing Low-Carbon Ferrochromium. Pat. 2831761 US. Publ. 22.04.1958.
36. Saunders E.R., Harbrecht W.L. Nitrogen-Bearing Ferrochromium. Pat. 2797156 US. Publ. 25.06.1957.
37. Kirichenko I.D. Sposob polucheniya malouglerodistogo i bezuglerodistogo ferrokhroma s azotom [Method for producing lowcarbon and carbon-free ferrochrome with nitrogen]. Certificate of authorship SSSR no. 108953. Publ. 26.12.1956. (In Russ.).
38. Kirichenko I.D. New method for producing carbon-free ferrochrome. Stal’. 1958, no. 2, pp. 131–137. (In Russ.).
39. Chadwick C.G. Manufacture of simplex ferrochrome by the vacuum process. JOM. 1961, vol. 13, no. 11, pp. 806–808.
40. Bezobrazov S.V., Dubrovin A.S., Kuznetsov V.L. etc. Quality of chromium ferroalloys. In: Proizvodstvo ferrosplavov. Issue 2 [Production of Ferroalloys]. Chelyabinsk: Yuzhno-Ural’skoe knizhnoe izdatel’stvo, 1973, pp. 104–117. (In Russ.).
41. Sordillo G., Cassaro F. Process for Production Ferrochrome Alloys with High Nitrogen Content and Low Carbon Content. Pat. 3595709 US. Publ. 27.07.1971.
42. Wiester H.-J., Vogels H.A., Ulmer H. Stickstoff als Legierungselement in Mangan–Vanadin – Baustahlen aus dem Siemens – Martin – Ofen. Stahl und Eisen. 1959, Bd. 79, no. 16, S. 1120–1129. (In Germ.).
43. Gol’dshtein M.I., Grin’ A.V., Blyum E.E., Panfilova L.M. Uprochnenie konstruktsionnykh stalei nitridami [Hardening Construction Steels by Nitrides]. Moscow: Metallurgiya, 1970, 224 p.
44. Tanczyn H. Production of High Nitrogen Manganese Alloy. Pat. 2696433 US. Publ. 07.12.1954.
45. Wanamaker E.M., Forbes D.D. Method for Continuously Producing Thermally Stable Nitrided Manganese. Pat. 2860080 US. Publ. 11.11.1958.
46. Perepelkin V.P., Bogolyubov V.A. High-nitrogen doping alloys. Stal’. 1960, no. 9, pp. 813–816. (In Russ.).
47. Perepelkin V.P., Matyushenko N.K., Zel’din V.S., Protsenko I.G. Production of nitrided manganese at the Zaporozhye Ferroalloy Plant. Stal’. 1971, no. 7, p. 616. (In Russ.).
48. Madsen S.W., Payer E.L. Nitrogen-containing Alloy and its Preparation. Pat. 3304175 USA. Publ.14.02.1967.
49. Downing G.H., Merkert R.F. Vanadium-containing Addition Agent and its Process for Producing Same. Pat. 3334992 USA. Publ. 8.08.1967.
50. Fichte R., Franke H., Reteistorf H.G. Gesinterte stickstoffhaltige Vorlegierungen für das Legieren von Stahle. Pat. 1558500 Germany. Publ. 01.07.1971. (In Germ.).
51. Pin’es P., Zezulova Z. Alloying of steel with nitrogen using organic substances. Stal’. 1959, no. 7, pp. 625–626. (In Russ.).
52. Franke H., Fuchs A. Stickstoffhaltige geschmolzene Legierungen und Sinter Produkte. Nene Hutte. 1966, no. 10, S. 604–606. (In Germ.).
53. Pant P., Dahlmann P., Schlump W., Stein G. A new nitrogen alloyng technique – a way to distinctly improve the properties of austenitic steel. Steel Research. 1987, no. 1, pp. 18–25.
54. Senichev G.S., Takhautdinov R.S., Bodyaev Yu.A. etc. Improving the technology of smelting transformer steel in the BOF shop of OJSC MMK. Stal’. 2006, no. 3, pp. 17–22. (In Russ.).
55. Ziatdinov M.Kh., Maksimov J.M., Kolmakov A.D., etc. Production of Metallic Composition. Pat. 2080785 GB. Int. cl. C22C 1/04. B22F 3/12. Publ. 24.04.1985.
56. Ziatdinov M.Kh., Shatokhin I.M. Self-propagating high-temperature synthesis of ferrosilicon nitride. Steel in Translation. 2008, vol. 38, no. 1, pp. 39–44.
57. Ziatdinov M.Kh., Shatokhin I.M. Experience in the development, production, and use of self-propagating high-temperature synthesis materials in metallurgy. Metallurgist. 2008, vol. 52, no. 11–12, pp. 705–713.
58. Ziatdinov M.Kh., Shatokhin I.M. Self-propagating high-temperature synthesis of ferrochromium nitride. Steel in Translation. 2009, vol. 39, no. 9, pp. 789–794
59. Ziatdinov M.Kh., Shatokhin I.M. Self-propagating high-temperature synthesis of ferrovanadium nitride for use in smelting highstrength low-alloy steels. Steel in Translation. 2009, vol. 39, no. 11, pp. 1005–1011.
60. Ziatdinov M.Kh. Chromium combustion in a coflow nitrogen. Combustion, Explosion and Shock Waves. 2016, vol. 52, no. 4, pp. 462–469.
61. Ziatdinov M.Kh., Shatokhin I.M., Leont’ev L.I. SHS Technology of composition ferroalloys. Part I. Metallurgical SHS process. Synthesis of ferrovanadium and ferrochromium nitrides. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 5, pp. 339–347. (In Russ.).
62. Ziatdinov M.Kh., Shatokhin I.M., Leont’ev L.I. SHS Technology of composition ferroalloys. Part II. Synthesis of ferrosilicon nitride and ferrotitanium boride. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 7, pp. 527–535. (In Russ.).
63. Ziatdinov M.Kh. Metallurgical SHS processes as a route to industrial-scale implementation: An autoreview. Int. Journal of Self- Propagating High-Temperature Synthesis. 2018, vol. 27, no. 1, pp. 1–13.
64. Shatokhin I.M., Ziatdinov M.Kh., Manashev I.R., Shiryaev O.P., Kartunov A.D. Self-propagating high-temperature synthesis (SHS) of composite ferroalloys. CIS Iron and Steel Review. 2019, vol. 18, pp. 52–57.
Review
For citations:
Ziatdinov M.Kh. From the history of nitrided ferroalloys. Izvestiya. Ferrous Metallurgy. 2020;63(10):773–781. (In Russ.) https://doi.org/10.17073/0368-0797-2020-10-773-781