Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Oxygen solubility in boron-containing Ni – Co melts

https://doi.org/10.17073/0368-0797-2020-9-721-729

Abstract

Alloys of the Ni – Co system are widely used in industry. B ron is one of the alloying components in these alloys. The study of thermodynamics of the oxygen solution in boron-containing Ni – Co melts is of considerable interest for the practice of such alloys production. Thermodynamic analysis of oxygen solutions in boron-containing Ni – Co melts has been carried out. The equilibrium constant of interaction of boron and oxygen dissolved in the nickel-cobalt melts, the activity coefficients at infinite dilution, and the interaction parameters characterizing these solutions were determined for melts of different composition at 1873 K. During interaction of boron with oxygen in Ni – Co melts, the oxide phase, in addition to B2O3, contains NiO and CoO. The values of the mole fractions of B2O3, NiO and CoO in the oxide phase for different boron concentrations in Ni – Co melts were calculated at 1873 K. In the case of nickel melt at boron contents above 0.01 %, the mole fraction of boron oxide is close to unity. As the cobalt content in the melts increases to 20 %, the mole fraction of boron oxide in the oxide phase decreases, and then practically does not change. Dependences of the oxygen solubility on the contents of cobalt and boron in the studied melts were calculated. The deoxidation ability of boron decreases slightly with increasing cobalt content up to 20 %, and then increases with increasing cobalt content in the melt. Boron contents in minimum points on the oxygen solubility curves and the corresponding minimum oxygen concentrations were determined.

About the Authors

A. A. Aleksandrov
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Cand. Sci. (Eng.), Senior Researcher

Moscow



V. Ya. Dashevskii
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Energy-Efficient and Resource-Saving Industrial Technologies”, Head of the Laboratory

Moscow



References

1. Nickel, Cobalt, and Their Alloys. Davis J.R. ed. ASM International – Materials Park, OH, USA, 2000, 422 p.

2. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: University Press, 2006, 372 p.

3. Logunov A.V., Shmotin Yu.N. Sovremennye zharoprochnye nikelevye splavy dlya diskovykh gazovykh turbin (materialy i tekhnologii) [Modern heat-resistant nickel alloys for disk gas turbines (materials and technologies)]. Maslenkov S.B. ed. Moscow: Nauka i tekhnologii, 2013, 256 p. (In Russ.).

4. Lyakishev N.P., Pliner Yu.L., Lappo S.I. Borsoderzhashchie stali i splavy [Boron Steels and Alloys]. Moscow: Metallurgiya, 1986, 192 p. (In Russ.).

5. Bokshtein S.Z., Vasilenok L.B., Kablov E.N., Radin I.V., Ryabova G.G. Microalloying with boron and the structural stability of nickel alloys. Russian metallurgy. Metally. 1986, no. 6, pp. 142–146.

6. Diabb J., Juárez-Hernandez A., Colas R., Castillo A.G., GarcíaSanchez E., Hernandez-Rodriguez M.A.L. Boron influence on wear resistance in nickel-based alloys. Wear. 2009, vol. 267, no. 1-4, pp. 550–555.

7. Stahleisen Verlag; Eisenhüttenleute Verein Deutscher. Düsseldorf: Verlag Stahleisen GmbH, 1995, 634 p. (In Germ.).

8. Turkdogan E.T. Physical Chemistry of High Temperature Technology. New York: Academic Press, 1980., 447 p.

9. Kulikov I.S. Raskislenie metallov [Deoxidation of Metals]. Moscow: Metallurgiya, 1975, 504 p. (In Russ.).

10. Kulikov I.S. Termodinamika oksidov [Thermodynamics of Оxides]. Moscow: Metallurgiya, 1986, 344 p. (In Russ.).

11. Seetharaman S. Fundamentals of Metallurgy. Cambridge: Woodhead Publ., 2005, 576 p.

12. Belyanchikov L.N. Universal technique for recalculating values of interaction parameters of elements from one alloy base to another based on theory of quasi-regular solutions. Part II. Evaluation of parameters of elements interaction in nickel alloys. Elektrometallurgiya. 2009, no. 2, pp. 29–38. (In Russ.).

13. Turkdogan E.T. Fundamentals of Steelmaking. Leeds: Maney Publ., 2010, 345 p.

14. Aleksandrov A.A., Dashevskii V.Ya., Leont’ev L.I. Thermodynamics of oxygen solutions in boron-containing Fe – Ni melts. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 3, pp. 201–210. (In Russ.).

15. Sigworth G.K., Elliott J.F., Vaughn G., Geiger G.H. The Thermodynamics of dilute liquid nickel alloys. Metallurgical Soc. CIM. 1977, annual volume, vol. 16, no. 1, pp. 104–110.

16. Belyanchikov L.N. Estimation of interaction parameters, activity coefficients and heats of dissolution of elements in cobalt-based alloys by recalculating from their values in iron alloys. Elektrometallurgiya. 2009, no. 4, pp. 16–22. (In Russ.).

17. Sigworth G.K., Elliott J.F. The thermodynamics of dilute liquid cobalt alloys. Canadian Metallurgical Quarterly. 1976, vol. 15, no. 2, pp. 123–127.

18. Frohberg M.G., Wang M. Thermodynamic properties of sulfur in liquid copper-antimony alloys at 1473 K. Z. Metallkd. 1990, vol. 81, no. 7, pp. 513–515.

19. Lupis C.H.P. Chemical Thermodynamics of Materials. New-York; North-Holland: Elsevier Science Publ., 1983, 581 p.

20. Aleksandrov A.A., Dashevskii V.Ya. Thermodynamics of the oxygen solutions in chromium-containing Ni–Co melts. Russian Metallurgy (Metally). 2016, vol. 2016, no. 7, pp. 642–648.

21. Ishii F., Ban-ya S. Deoxidation Equilibrium of silicon in liquid nickel-copper and nickel-cobalt alloys. ISIJ International. 1993, vol. 33, no. 2, pp. 245–250.

22. Belyanchikov L.N. Universal technique for recalculating values of interaction parameters of elements from one alloy base to another based on theory of quasi-regular solutions. Part I. Theoretical foundations and adequacy of recalculation model. Elektrometallurgiya. 2009, no. 1, pp. 23–29. (In Russ.).

23. Entsiklopedicheskii slovar’ po metallurgii: Spravochnoe izdanie. V 2-ukh t. T. 1. [Encyclopedic Metallurgical Dictionary: Reference Ed. In 2 vols. Vol. 1]. Lyakishev N.P. ed. Moscow: Intermet Inzhiniring, 2000, 412 p. (In Russ.).

24. Snitko Yu.P., Surovoi Yu.N., Lyakishev N.P. On relationship between interaction parameters and atomic characteristics of the components. DAN. 1983, vol. 268, no. 5, pp. 1154–1156. (In Russ.).

25. Hino M., Ito K. Thermodynamic Data for Steelmaking. Tohoku University Press, Sendai, 2010, 264 p.

26. Dashevskii V.Ya., Aleksandrov A.A., Leont’ev L.I. Thermodynamics of oxygen solutions in manganese-containing Ni – Co melts. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 6, pp. 475–483. (In Russ.).

27. Aleksandrov A.A., Dashevskii V.Ya. Thermodynamics of the oxygen solutions in silicon-containing Ni – Co melts. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 2, pp. 163–167. (In Russ.).

28. Aleksandrov A.A., Dashevskii V.Ya. Oxygen Solubility in Titanium-Containing Melts of the Ni–Co System. Russian Metallurgy (Metally). 2018, vol. 2018, no. 11, pp. 1081–1087. (In Russ.).

29. Aleksandrov A.A., Dashevskii V.Ya., Leont’ev L.I. Thermodynamics of the oxygen solutions in the aluminum-containing Ni–Co melts. Russian Metallurgy (Metally). 2017, vol. 2017, no. 7, pp. 590–593.

30. Miki T. Dilute Solutions. Treatise on Process Metallurgy. Vol. 1: Process Fundamentals. Seetharaman S. ed. Elsevier Ltd., 2014, pp. 557–585.

31. Ishii F., Ban-ya S., Hino M. Thermodynamics of the deoxidation equilibrium of aluminum in liquid nickel and nickel-iron alloys. ISIJ International. 1996, vol. 36, no. 1, pp. 25–31.

32. Hultgren R., Desai P.D., Hawkins D.T., Gleiser M., Kelley K.K. Selected Values of the Thermodynamic Properties of Binary Alloys. Ohio: Metals Park, Amer. Soc. Metals, 1973, 1435 p.


Review

For citations:


Aleksandrov A.A., Dashevskii V.Ya. Oxygen solubility in boron-containing Ni – Co melts. Izvestiya. Ferrous Metallurgy. 2020;63(9):721-729. (In Russ.) https://doi.org/10.17073/0368-0797-2020-9-721-729

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)