Model of nanostructural layers formation at long-term operation of rails
https://doi.org/10.17073/0368-0797-2020-9-699-706
Abstract
Keywords
About the Authors
V. D. SarychevRussian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Science named after V.M. Finkel
Novokuznetsk, Kemerovo Region – Kuzbass
S. A. Nevskii
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Science named after V.M. Finkel
Novokuznetsk, Kemerovo Region – Kuzbass
V. E. Kormyshev
Russian Federation
Cand. Sci. (Eng.), Engineer of the Chair of Science named after V.M. Finkel
Novokuznetsk, Kemerovo Region – Kuzbass
A. A. Yur’ev
Russian Federation
Cand. Sci. (Eng.), Manager of Product and Resource Management
Novokuznetsk, Kemerovo Region – Kuzbass
V. E. Gromov
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Head of the Chair of Science named after V.M. Finkel
Novokuznetsk, Kemerovo Region – Kuzbass
References
1. Gromov V.E., Peregudov O.A., Ivanov Yu.F., Konovalov S.V., Yur’ev A.A. Evolyutsiya strukturno-fazovykh sostoyanii metalla rel’sov pri dlitel’noi ekspluatatsii [Evolution of structural-phase states of rails metal during long-term operation]. Novokuznetsk: ITs SibGIU; Novosibirsk: Izd-vo SO RAN, 2017, 164 p. (In Russ.).
2. Ivanisenko Yu., Fecht H.J. Microstructure modification in the surface layers of railway rails and wheels. Steel Tech. 2008, vol. 3, no. 1, pp. 19–23.
3. Ivanisenko Yu., MacLaren I., Sauvage X., Valiev R.Z., Fecht H.J. Shear-induced α → γ transformation in nanoscale Fe–C composite. Acta Materialia. 2006, vol. 54, no. 6, pp. 1659–1669.
4. Ning Jiang-li, Courtois-Manara E., Kormanaeva L., Ganeev A.V., Valiev R.Z., Kubel C., Ivanisenko Yu. Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion. Materials Science and Engineering: A. 2013, vol. 581, pp. 81–89.
5. Baumann G., Fecht H.J., Liebelt S. Formation of white-etching layers on rail treads. Wear. 1996, vol. 191, no. 1-2, pp. 133–140.
6. Österle Rooch H., Pyzalla A., Wang L.W. Investigation of white etching layers on rails by optical microscopy, electronmicroscopy, X-ray and synchrotron X-ray diffraction. Materials Science and Engineering: A. 2001, vol. 303, pp. 150–157.
7. Wild E., Wang L., Hasse B., Wroblewski T., Goerigk G., Pyzalla A. Microstructure alterations at the surface of a heavily corrugated rail with strong ripple formation. Wear. 2003, vol. 254, no. 9, pp. 876–883.
8. Zhang H.W., Ohsaki S., Mitao S., Ohnuma M., Hono K. Microstructural investigation of white etching layer on pearlite steel rail. Materials Science and Engineering: A. 2006, vol. 421, pp. 191–199.
9. Takahashi J., Kawakami K., Ueda M. Atom probe tomography analysis of the white etching layer in a rail track surface. Acta Materialia. 2010, vol. 58, no. 10, pp. 3602–3612.
10. Lojkowski W., Djahanbakhsh M., Bürkle G., Gierlotka S., Zielinski W., Fecht H.J. Nanostructure formation on the surface of railway tracks. Materials Science and Engineering: A. 2001, vol. 303, no. 1-2, pp. 197–208.
11. Ishida M. Rolling contact fatigue (RCF) defects of rails in Japanese railways and its mitigation strategies. Electronic Journal of Structural Engineering. 2013, vol. 13, no. 1, pp. 67–74.
12. Steenbergen M., Dollevoet R. On the mechanism of squat formation on train rails – Part I: Origination. International Journal of Fatigue. 2013, vol. 47, pp. 361–372.
13. Pal S., Valente C., Daniel W., Farjoo M. Metallurgical and physical understanding of rail squat initiation and propagation. Wear. 2012, vol. 284-285, pp. 30–42.
14. Clayton P. Tribological aspects of wheel-rail contact: A review of recent experimental research. Wear. 1996, vol. 191, pp. 170–183.
15. Wang L., Pyzalla A., Stadlbauer W., Werner E.A. Microstructure features on rolling surfaces of railway rails subjected to heavy loading. Materials Science and Engineering: A. 2003, vol. 359, no. 1-2, pp. 31–43.
16. Glezer A.M. On the nature of ultrahigh plastic (Megaplastic) strain. Bulletin of the Russian Academy of Sciences: Physics. 2007, vol. 71, no. 12, pp. 1722–1730.
17. Mulyukov R.R., Nazarov A.A., Imaev R.M. Deformation methods of materials nanostructuring: prerequisites, history, present situation and prospects. Izv. vuz. Fizika. 2008, vol. 51, no. 5, pp. 47–59. (In Russ.).
18. Gromov V.E., Yuriev A.A., Peregudov O.A., Konovalov S.V., Ivanov Y.F., Glezer A.M., Semin A.P. Physical nature of surface structure degradation in long term operated rails. Key Engineering Materials, AIP Conference Proceedings. 2017, no. 1909, pp. 020066-1–020066-4.
19. Gromov V.E., Yuriev A.A., Ivanov Yu.F., Glezer A.M., Konovalov S.V., Semin A.P., Sundeev R.V. Defect substructure change in 100-m differentially hardened rails in long-term operation. Materials Letters. 2017, vol. 209, pp. 224–227.
20. Yur’ev A.A., Gromov V.E., Morozov K.V., Peregudov O.A. Changes in structure and phase composition of the surface of differentially hardened 100-meter rails in operation. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 10, pp. 826–830. (In Russ.).
21. Zerbst U., Schodel M., Heyder R. Damage tolerance investigation on rails. Engineering Fracture Mechanics. 2009, vol. 76, no. 17, pp. 2637–2653.
22. Zerbst U., Lunden R., Edel K.-O., Smith R.A. Introduction to the damage tolerance behavior on railway rails – A review. Engineering Fracture Mechanics. 2009, vol. 76, no. 17, pp. 2563–2601.
23. Rubtsov V.E., Tarasov S.Yu., Kolubaev A.V. One-dimensional model of inhomogeneous shear in sliding. Physical Mesomechanics. 2012, vol. 15, no. 5-6, pp. 337-341.
24. Tarasov S.Yu., Rubtsov V.E., Kolubaev A.V., Gorbatenko V.V. Analysis of microscopic strain fields at sliding friction. Izv. vuz. Fizika. 2013, vol. 56, no. 7-2, pp. 350–355. (In Russ.).
25. Rubtsov V.E., Tarasov S.Yu., Kolubaev A.V. Deformation inhomogeneity and shear instability of material during friction. Izv. vuz. Fizika. 2011, no. 11-3, pp. 215–220. (In Russ.).
26. Sarychev V.D., Vashchuk E.S., Budovskikh E.A., Gromov V.E. Nanosized structure formation in metals under the action of pulsed electric-explosion-induced plasma jets. Technical Physics Letters. 2010, vol. 36, no. 7, pp. 656-659.
27. Granovskii A.Yu., Sarychev V.D., Gromov V.E. Model of formation of inner nanolayers in shear flows of material. Technical Physics. 2013, vol. 58, no. 10, pp. 1544-1547.
28. Sarychev V.D., Nevskii S.A., Gromov V.E. Model of nanostructures formation in rail steel under intense plastic deformation. Deformatsiya i razrushenie materialov. 2016, no. 6, pp. 25–29. (In Russ.).
29. Sarychev V.D., Nevskii S.A., Sarycheva E.V., Konovalov S.V., Gromov V.E. Viscous flow analysis of the Kelvin-Helmholtz instability for short waves. AIP Conference Proceedings. 2016, vol. 1783, no. 1, article 020198.
30. Funada T., Joseph D.D. Viscous potential flow analysis of KelvinHelmholtz instability in a channel. Journal of Fluid Mechanics. 2001, vol. 445, pp. 263–283.
31. Li X., Tankin R.S. On the temporal instability of a two-dimensional viscous liquid sheet. Journal of Fluid Mechanics. 1991, vol. 226, pp. 425–443.
32. Dasgupta D., Nath S., Bhanja D. A study on dual role of viscosity on the stability of a viscous planar liquid sheet surrounded by inviscid gas streams of equal velocities, and prediction of resulting droplet distribution using maximum entropy formulation. Physics of Fluids. 2019, vol. 31, no. 7, article 74103.
33. Shiryaeva S.O., Grigor’ev A.I., Sukhanov S.A. On the role of fluid viscosity in realization of the Kelvin-Helmholtz instability. Elektronnaya obrabotka materialov. 2013, vol. 49, no. 5, pp. 56–61. (In Russ.).
Review
For citations:
Sarychev V.D., Nevskii S.A., Kormyshev V.E., Yur’ev A.A., Gromov V.E. Model of nanostructural layers formation at long-term operation of rails. Izvestiya. Ferrous Metallurgy. 2020;63(9):699-706. (In Russ.) https://doi.org/10.17073/0368-0797-2020-9-699-706