Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Accuracy of determining the physical friction coefficient at cold rolling by methods of strip forced braking and torque moment

https://doi.org/10.17073/0368-0797-2020-8-639-643

Abstract

The paper presents a comparative study of the accuracy of d mining the physical friction coefficient during cold rolling by the methods of forced strip braking fQ and torque fМ , proposed by I.M. Pavlov and D. Bland together with G. Ford. The compared methods have a sufficient theoretical basis, which contributed to their widespread use. They are based on experimental measurement of the braking force of the rear end of the strip Q, the resultant of normal rolling forces N and torque M. It is shown that, because of the approximate determination of position of the point of resultant rolling force application on the contact arc, the friction coefficient values are always overstated when determined by the method of forced strip braking. The method of torque moment is devoid of this shortcoming. It provides more accurate and reliable data on the value of the physical friction coefficient at cold rolling and allows us to recommend it as the main method for the experimental determination of this parameter. A comparative experimental study of the physical friction coefficient was performed during cold rolling using technological lubrication under laboratory conditions. It is established that, other things being equal, the values of the friction coefficient found by the method of forced strip braking are 1.25 – 1.40 times higher than by the torque method, thereby confirming the validity of theoretical conclusions. It is shown that the torque method is more accurate than the method of strip forced braking and is one of the most reliable methods for determining the physical coefficient of friction during cold rolling.

About the Author

Ya. D. Vasilev
National Metallurgical Academy of Ukraine
Ukraine

Dr. Sci. (Eng.), Professor of the Chair “Metal Forming”

Dnipro



References

1. Pavlov I.M. Teoriya prokatki [Theory of rolling]. Moscow: Metallurgizdat, 1950, 610 p. (In Russ.).

2. Grudev A.P. Vneshnee trenie pri prokatke [External friction at rolling]. Moscow: Metallurgiya, 1973, 288 p. (In Russ.).

3. Pavlov I.M., Shelest A.E. Investigation of the friction coefficient at rolling of titanium and its alloys. Nauchnye doklady vysshei shkoly. 1959, no. 1, pp. 105–112. (In Russ.).

4. Tarnovskii I.Ya., Levanov A.N., Poksevatkin M.I. Kontaktnye napryazheniya pri plasticheskoi deformatsii [Contact stresses during plastic deformation]. Moscow: Metallurgiya, 1966, 279 p. (In Russ.).

5. Grudev A.P., Zil’berg Yu.V., Tilik V.T. Trenie i smazki pri obrabotke metallov davleniem. Sprav. izd. [Friction and lubrication in metal forming. Reference book]. Moscow: Metallurgiya, 1982, 312 p.

6. Grudev A.P. Teoriya prokatki [Theory of rolling]. Moscow: Intermet Inzhiniring, 2001, 280 p. (In Russ.).

7. Grudev A.P. Modern methods of investigating external friction during rolling. In: Teoriya prokatki: Materialy konferentsii po teoreticheskim voprosam prokatki [Theory of rolling: Proceedings of the Conf. on Theoretical Rolling Issues]. Moscow: Metallurgizdat, 1962, pp. 82–100. (In Russ.).

8. Tselikov A.I., Nikitin G.S., Rokotyan S.E. Teoriya prodol’noi prokatki [Theory of longitudinal rolling]. Moscow: Metallurgiya, 1980, 320 p. (In Russ.).

9. Roberts William L. Cold rolling of steel. New York; Basel: Marcel Dekker, Inc., 1978. (Russ. ed.: Roberts W.L. Kholodnaya prokatka stali. Moscow: Metallurgiya, 1982, 544 p.).

10. Smirnov V.S. Teoriya prokatki [Theory of rolling]. Moscow: Metallurgiya, 1967, 460 p. (In Russ.).

11. Bland D.R., Ford H. The calculation of roll force and torque in cold strip rolling with tensions. Proceeding of the Institution of Mechanical Engineers. 1948, vol. 159, no. 1, pp. 144–163.

12. Vasilev Ya.D., Minaev A.A. Teoriya prodol’noi prokatki. Uchebnik dlya magistrantov VUZov [Theory of longitudinal rolling. Textbook for master students]. Donetsk: UNITEKh, 2010, 456 p. (In Russ.).

13. Laptev A.M., Tkachenko Ya.Yu., Zhabin V.I. Construction of a diagram for determining the friction coefficient by Levanov formula by the method of ring shrink-off. In: Obrabotka metallov davleniem: Sbornik nauchnykh trudov [Metal forming. Coll. of sci. papers]. Kramatorsk: DGMA, 2011, no. 3(28), pp. 129–132. (In Russ.).

14. Vasilev Ya.D. Fundamentals of the theory of longitudinal cold rolling. In: Plasticheskaya deformatsiya metallov: Kollektivnaya monografiya [Plastic deformation of metals: Collective monograph]. Dnepropetrovsk: Aktsent PP, 2014, pp. 107–125. (In Russ.).

15. Mazur V.L., Saf’yan A.M., Prikhod’ko I.Yu., Yatsenko A.I. Upravlenie kachestvom tonkolistovogo prokata [Quality management of thin sheet metal]. Kiev: Tekhnika, 1997, 384 p. (In Russ.).

16. Khaikin B.E. Model of friction in conditions metal forming. Izvestiya. Ferrous Metallurgy. 1982, no. 9, pp. 57–61. (In Russ.).

17. Khaikin B.E. Operational approach to the problem of friction in conditions of metal forming. Izvestiya. Ferrous Metallurgy. 2000, no. 11, pp. 26–27. (In Russ.).

18. Levanov A.N. State and perspectives of research of contact friction in metal forming processes. Stal’. 2000, no. 9, pp. 31–35. (In Russ.).

19. Zil’berg Yu.V. Rules and models of external friction. Izvestiya. Ferrous Metallurgy. 2000, no. 11, pp. 22–24. (In Russ.).

20. Khaikin B.E. Review of the article Yu.V. Zilberg “Rules and models of external friction”. Izvestiya. Ferrous Metallurgy. 2000, no. 11, pp. 24–25. (In Russ.).

21. Oginskii I.K. Controversial provisions and contradictions of modern rolling theory. In: Plasticheskaya deformatsiya metallov: Kollektivnaya monografiya [Plastic deformation of metals: Collective monograph]. Dnepropetrovsk: Aktsent PP, 2014, pp. 131–141. (In Russ.).

22. Vasilev Ya.D., Dementienko A.V. Model of friction tension at thin sheet rolling. Izvestiya. Ferrous Metallurgy. 2002, no. 5, pp. 19–23. (In Russ.).

23. Vasilev Ya.D., Zavgorodnii M.I., Samokish D.N. The investigation of the maximum position in contact normal stresses relative to the neutral plane at cold rolling. Izvestiya. Ferrous Metallurgy. 2014, no. 4, pp. 21–24. (In Russ.).


Review

For citations:


Vasilev Ya.D. Accuracy of determining the physical friction coefficient at cold rolling by methods of strip forced braking and torque moment. Izvestiya. Ferrous Metallurgy. 2020;63(8):639-643. (In Russ.) https://doi.org/10.17073/0368-0797-2020-8-639-643

Views: 762


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)