Change dynamics of alloy VT6 structure from ingot to alloyed material
https://doi.org/10.17073/0368-0797-2020-8-623-630
Abstract
About the Authors
I. A. LogachevRussian Federation
Cand. Sci. (Eng.), Leading Engineer of the Laboratory of Hybrid Additive Technologies
Moscow
M. V. Zheleznyi
Russian Federation
Research Engineer of the Laboratory of Materials Diagnostics
Moscow
O. A. Komolova
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Metallurgy of Steel, New Production Technologies and Metal Protection, Senior Researcher of the Laboratory of Materials Diagnostics
Moscow
K. V. Grigorovich
Russian Federation
Academician, Dr. Sci. (Eng.), Professor of the Chair of Metallurgy of Steel, New Production Technologies and Metal Protection, Head of the Laboratory of Materials Diagnostics
Moscow
References
1. Dobrovol’skii M.V. Zhidkostnye raketnye dvigateli [Liquid propellant rocket engines]. Moscow: Izd-vo MGTU im. N.E. Baumana, 2005, 486 p. (In Russ.).
2. Patsuk E.B., Korshakevich I.S. Problems and prospects for development of rocket and space industry. Aktual’nye problemy aviatsii i kosmonavtiki. 2017, vol. 3, no. 13, pp. 392–394. (In Russ.).
3. Krishtofor A.P. Changes in Russia’s competitive position in the market of global space products. Vestnik universiteta. 2019, no. 5, pp. 86–92. (In Russ.).
4. Milewski J.O. Additive Manufacturing of Metals. Springer Series in Materials Science, 2017, 351 p.
5. Logacheva A.I., Sentyurina Zh.A., Logachev I.A. Additive technologies for production of critical products from metals and alloys (Review). Perspektivnye materialy. 2015, no. 5, pp. 5–15. (In Russ.).
6. Gasser А., Backes G., Kelbassa I., Weisheit A., Wissenbach K. Laser additive manufacturing. Laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine application. Laser Technik Journal. 2010, vol. 7, no. 2, pp. 58–63.
7. Carter L.N., Martin C., Withers Ph.J., Attallah M.M. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. Journal of Alloys and Compounds. 2014, vol. 615, pp. 338–347.
8. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review. Int. Journal of Advanced Manufacturing Technology. 2016, vol. 83, no. 1-4, pp. 389–405.
9. Yadroitsev I., Bertrand Ph., Smurov I. Parametric analysis of the selective laser melting process. Applied Surface Science. 2007, vol. 253, no. 19, pp. 8064–8069.
10. Sudarshan T.S. Additive Manufacturing: Innovations, Advances, and Applications. Taylor & Francis Group, LLC, 2016, 476 p.
11. Kruth J.-P., Vandenbroucke B., Van Vaerenberg J., Mercelis P. Benchmarking of different SLM/SLS processes as rapid manufacturing techniques. Int. Conf. Polymers and Moulds Innovations (PMI), Gent, Belgium, April 2005. Available at URL: https://ris.utwente.nl/ws/portalfiles/portal/5676701/Wa1021.pdf
12. Yadroitsev I., Thivillon L., Bertrand Ph., Smurov I. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied Surface Science. 2007, vol. 254, no. 4, pp. 980–983.
13. Meier H., Haberland Ch., Matwiss U. Experimental studies on selective laser melting of metallic parts. Werkstofftech. 2008, vol. 39, no. 9, pp. 665–670.
14. Yasa E., Kruth J.-P. Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser remelting. Procedia Engineering. 2011, vol. 19, pp. 389–395.
15. Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective laser melting of iron-based powder. Journal of Materials Processing Technology. 2004, vol. 149, no. 1-3, pp. 616–622.
16. Chen G., Zhao S.Y., Tan P., Wang J., Xiang C.S., Tanga H.P. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technology. 2018, vol. 333, pp. 38–46.
17. Sun Yu, Aindow M., Hebert R.J. Comparison of virgin Ti-6Al-4V powders for additive manufacturing. Additive Manufacturing. 2018, vol. 21, pp. 544–555
18. Ashgriz N. Handbook of Atomization and Sprays. Theory and Applications. Springer, 2011, 951 p.
19. Logachev I.A., Potapkin P.A., Grigorovich K.V., Zheleznyi M.V., Komolova O.A. Evolution of the structure and composition of VT6 alloy from ingot to alloyed material. In: Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii “Sovremennye materialy i peredovye proizvodstvennye tekhnologii (SMPPT-2019)” [Abstracts of the Int. Sci. Conf. Modern materials and Advanced Production Technologies]. 2019, p. 86. (In Russ.).
20. Logachev I.A., Zheleznyi M.V., Potapkin P.A., Komolova O.A., Grigorovich K.V. Investigation of VT6 alloy samples at all stages of part production using SLS method. In: Sbornik tezisov: Fiziko-khimicheskie osnovy metallurgicheskikh protsessov. Mezhdunarodnaya nauchnaya konferentsiya, imeni akademika A.M. Samarina [Collection of abstracts: Physical and Chemical Foundations of Metallurgical Processes. Int. Sci. Conf. named after Academician A.M. Samarin]. 2019, p. 95. (In Russ.).
21. Ozerskoi N.E., Popovich A.A, Ermakov B.S. Preparation of spherical powders of VT6 alloy for use in selective laser melting technology. Nauchno-tekhnicheskie vedomosti SPBPU. Estestvennye i inzhenernye nauki. 2019, no. 14, pp. 107–115. (In Russ.).
Review
For citations:
Logachev I.A., Zheleznyi M.V., Komolova O.A., Grigorovich K.V. Change dynamics of alloy VT6 structure from ingot to alloyed material. Izvestiya. Ferrous Metallurgy. 2020;63(8):623-630. (In Russ.) https://doi.org/10.17073/0368-0797-2020-8-623-630