Utilization of dispersed waste of ferroalloy production on the basis of metallurgical SHS-process
https://doi.org/10.17073/0368-0797-2020-8-591-599
Abstract
Keywords
About the Authors
I. R. ManashevRussian Federation
Cand. Sci. (Eng.), Deputy Development Director of composite materials production
Magnitogorsk, Chelyabinsk Region
T. O. Gavrilova
Russian Federation
Cand. Sci. (Eng.), Deputy General Director
Magnitogorsk, Chelyabinsk Region
I. M. Shatokhin
Russian Federation
Dr. Sci. (Eng.), General Director
Magnitogorsk, Chelyabinsk Region
M. Kh. Ziatdinov
Russian Federation
Dr. Sci. (Eng.), Senior Researcher
Tomsk
L. I. Leont’ev
Russian Federation
Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher
Ekaterinburg
Moscow
References
1. Gasik M.I., Lyakishev N.P., Emlin B.I. Teoriya i tekhnologiya proizvodstva ferrosplavov [Theory and technology of ferroalloy production]. Moscow: Metallurgiya, 1988, 784 p. (In Russ.).
2. Pavlov S.V., Snitko Yu.P., Plyukhin S.B. Waste and emissions from the production of ferrosilicon. Elektrometallurgiya. 2001, no. 4, pp. 22–28. (In Russ.).
3. Kanaev Yu.P., Bondarev A.A., Brylyakov V.I., Molchanov N.E., Shul’gin Yu.F., Lubyanoi D.A. Mastering remelting of ferrosilicon fines to produce pure grades of ferrosilicon and complex inoculants. Steel in Translation. 2000, vol. 30, no. 10, pp. 32–36.
4. Ziatdinov M.Kh., Shatokhin I.M., Leont’ev L.I. SHS Technology of composition ferroalloys. Part I. Metallurgical SHS process. Synthesis of ferrovanadium and ferrochromium nitrides. Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 5, pp. 339–346. (In Russ.).
5. Merzhanov A.G., Mukas’yan A.C. Tverdoplamennoe gorenie [Solid-flame combustion]. Moscow: TORUS PRESS, 2007, 336 p. (In Russ.).
6. Merzhanov A.G. Fundamentals, achievements, and perspectives for development of solid-flame combustion. Russian Chemical Bulletin. 1997, vol. 46, no. 1, pp. 1–27.
7. Mizin V.G., Chirkov N.A., Ignat’ev V.S. etc. Ferrosplavy: Spravochnoe izdanie [Ferroalloys: Reference book]. Moscow: Metallurgiya, 1992, 415 p. (In Russ.).
8. Iwamoto S., Denki Kagaku Kogyo. Method for Treatment of Ferrosilicon Nitride. Patent no. 1461119, GB. Int. Cl. C01B21/06. Publ. 13.01.1977.
9. Lopes A.B. The influence of ferrosilicon nitride on the performance of the modern taphole mud for blast furnace. Refractories Applications and News. 2002, vol. 7, no. 5, pp. 26–30.
10. Pant P., Dahlmann P., Schlump W., Stein G. A new nitrogen alloying technique – a way to distinctly improve the properties of austenitic steel. Steel Research. 1987, vol. 58, no. 1, pp. 18–25.
11. Zakorzhevskii V.V., Borovinskaya I.P. Some regularities of α-Si 3 N 4 synthesis in a commercial SHS reactor. Int. Journal of Self-Propagating High-Temperature Synthesis. 2000, vol. 9, no. 2, pp. 171–191.
12. Mukas’yan A.S., Merzhanov A.G., Martynenko V.M., Borovinskaya I.P., Blinov M.Yu. Mechanism and principles of silicon combustion in nitrogen. Combustion, Explosion, and Shock Waves. 1986, vol. 22, no. 5, pp. 534–540.
13. Boyer S.M., Moulson A.J. A mechanism for the nitridation of Fecontaminated silicon. Journal of Materials Science. 1978, vol. 13, no. 8, pp. 1637–1646.
14. Vlasova M.V., Lavrenko V.A., Dyubova L.Yu., Gonzalez-Rodriguez J.G., Kakasey M.G. Nitriding of ferrosilicon powders. Journal of Materials Synthesis and Processing. 2001, vol. 9, no. 3, pp. 111–117.
15. Andrievski R.A. Melting point and dissociation of silicon nitride. Int. Journal of Self-Propagating High-Temperature Synthesis. 1995, vol. 4, no. 3, pp. 237–244.
16. Messier D.R., Riley F.L., Brook R.J. The α/β silicon nitride phase transformation. Journal of Material Science. 1978, vol. 13, no. 6, pp. 1199–1205.
17. Shatokhin I.M., Ziatdinov M.Kh., Manashev I.R. etc. Self-propagating high-temperature synthesis (SHS) of composite ferroalloys. CIS Iron and Steel Review. 2019, vol. 18, pp. 52–57.
18. Ziatdinov M.Kh., Shatokhin I.M., Leont’ev L.I. SHS Technology of composite ferroalloys. Part II. Synthesis of ferrosilicon nitride and ferrotitanium boride. Izvestiya. Ferrous Metallurgy, 2018. vol. 61, no. 7, pp. 527–534. (In Russ.).
19. Ziatdinov M.Kh. Chromium combustion in a nitrogen coflow. Combustion, Explosion and Shock Waves. 2016, vol. 52, no. 4, pp. 418–426.
20. Kolokol’tsev V.M., Vdovin K.N., Chernov V.P. etc. Investigation of mechanical and operational properties of high-manganese steel alloyed with nitrided ferrochrome. Vestnik MGTU im. G.I. Nosova. 2016, no. 3, pp. 46–54. (In Russ.).
21. Krylov S.A., Makarov A.A., Tonysheva O.A., Mosolov A.N. Influence of consumable electrode quality on technological process of electroslag remelting under pressure of high-nitrogen steels. Elektronnyi nauchnyi zhurnal “Trudy VIAM”. 2018, no. 9 (69), pp. 3–10. (In Russ.).
Review
For citations:
Manashev I.R., Gavrilova T.O., Shatokhin I.M., Ziatdinov M.Kh., Leont’ev L.I. Utilization of dispersed waste of ferroalloy production on the basis of metallurgical SHS-process. Izvestiya. Ferrous Metallurgy. 2020;63(8):591-599. (In Russ.) https://doi.org/10.17073/0368-0797-2020-8-591-599