Technological suitability of semi-coke as a carbon reducer in production of manganese and silicon alloys
https://doi.org/10.17073/0368-0797-2020-7-521-528
Abstract
About the Authors
A. A. ShubinaRussian Federation
Engineer of the Department of Chromatography, Ecology and Petroleum Products
Novokuznetsk, Kemerovo Region - Kuzbass
N. V. Zhuravleva
Russian Federation
Dr. Sci. (Eng.), Assist. Professor of the Chair “Thermal Power and Ecology”, General Director
Novokuznetsk, Kemerovo Region – Kuzbass
S. G. Korotkov
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Thermal Power and Ecology”
Novokuznetsk, Kemerovo Region – Kuzbass
P. P. Lazarevskii
Russian Federation
Cand. Sci. (Eng.), Chief Specialist of the Technological Department
Novokuznetsk, Kemerovo Region - Kuzbass
Yu. E. Romanenko
Russian Federation
LLC “Regionstroi”
Kemerovo Region - Kuzbass
References
1. Galevskii G.V., Anikin A.E., Rudneva V.V., Galevskii S.G. The use of lignite semi-coke in metallurgy: technological and economic assessment. Nauchno-tekhnicheskie vedomosti SPbGPU. 2016, no. 2 (243), pp. 114–123. (In Russ.).
2. Ryabov V.A., Stolbova O.B. Modern industrial complex of Kemerovo region. Vestnik Kemerovskogo gosudarstvennogo universiteta. Seriya: Biologicheskie, tekhnicheskie nauki i nauki o Zemle. 2017, no. 3, pp. 41–46. (In Russ.).
3. Strakhov V.M. Problems with carbon materials in ore and chemical electrofurnaces. Coke and Chemistry. 2010, vol. 53, no. 8, pp. 301–304.
4. Luo Y.H., Zhu D.Q., Pan J., Zhou X.L. Utilisation of semi-coke as by-product derived from coal-based direct reduction process in iron ore sintering. Ironmaking & Steelmaking. 2016, vol. 43, no. 8, pp. 628–634.
5. Pistorius P.C. Reductant selection in ferroalloy production: The case for the importance of dissolution in the metal. Journal of the South African Institute of Mining and Metallurgy. 2002, vol. 102, no. 1, pp. 33–36.
6. Koursaris A., See J.B. Reactions in the production of high-carbon ferromanganese from Mamatwan ore. Journal of the South African Institute of Mining and Metallurgy. 1979, vol. 79, pp. 149–158.
7. Cheng A. Сoke quality requirements for blast furnaces. Part I. Iron and Steelmaker. 2001, vol. 28, no. 1, pp. 30–32.
8. Ishii K. Preface to the special issue on innovative ironmaking reactions in new BF to aim at halving energy needs and minimizing environmental load. ISIJ International. 2004, vol. 44, no. 12, pp. 1969–2178.
9. Ishii K., Yagi J. Basic research on ironmaking process in blast furnace and development in near future. Tetsu-to-Hagane. 2001, vol. 87, no. 5, pp. 207–220.
10. Khanna R., Sahajwalla V., Rodgers B., McCarthy F. Dissolution of carbon from alumina-carbon mixtures into liquid iron: influence of carbonaceous material. Metallurgical and Materials Transactions B. 2006, vol. 37, no. 4, pp. 623–632.
11. Gudenau H.W., Meier L., Schemmann V. Сoke quality requirements for modern blast furnace operation. In: Ironmaking Conference Proceedings. 1998, pp. 1067–1072.
12. Kim V.A., Ul’eva G.A. Comparative evaluation of the structure of special cokes used in electrothermics. Vestnik MGTU im. G.I. Nosova. 2012, no. 2, pp. 20–23. (In Russ.).
13. Strakhov V.M., Surovtseva I.V., Elkin D.K., Elkin K.S., Cherevko A.E. Low-ash carbon reducing agents for electrothermal silicon production. Coke and Chemistry. 2012, vol. 55, no. 5, pp. 172–175.
14. Strakhov V.M. Alternative carbon reducing agents for ferroalloy production. Coke and Chemistry. 2009, vol. 52, no. 1, pp. 19–22.
15. Nefedov P.Ya. On the quality requirements of carbonaceous reducing agents for ore electrothermy. Koks i khimiya. 2000, no. 8, pp. 24–32. (In Russ.).
16. Dijs Н.М., Smith D.J. Factors affecting the resistivity and reactivity of carbonaceous reducing agents for the electric-smelting industry. Journal of the South African Institute of Mining and Metallurgy. 1980, pp. 286–296.
17. Feng В., Bhatia S.K., Barry J.C. Structural ordering of coal char during heat treatment and its impact on reactivity. Carbon. 2002, vol. 40, no. 4, pp. 481–496.
18. Soundara R.M., Somu M., Ganapathik, Malarkkan K.M.V. Thermal analysis-approach to coal reactivity studies. Indian Journal of Power and River Valley Development. 1980, vol. 30, no. 11-12, pp. 148–162.
19. Miura S., Silveston P.L. Сhange of pore properties during carbonization of coking coal. Carbon. 1980, vol. 18, no. 2, pp. 93–108.
20. Golitsyn M.V., Vyalov V.I., Bogomolov A.Kh., Pronina N.V., Makarova E.Yu., Mitronov D.V., Kuzevanova E.V., Makarov D.V. Prospects for technological use of coals in Russia. Georesursy. 2015, vol. 61, no. 2, pp. 41–53. (In Russ.).
21. Ugol’naya baza Rossii. Tom II. Ugol’nye basseiny i mestorozhdeniya Zapadnoi Sibiri (Kuznetskii, Gorlovskii, Zapadno-Sibirskii basseiny; mestorozhdeniya Altaiskogo kraya i Respubliki Altai) [Coal base of Russia. Vol. II. Coal basins and deposits of Western Siberia (Kuznetsk, Gorlovsky, West Siberian basins; deposits of the Altai Territory and the Altai Republic)]. Moscow: OOO “Geoinformtsentr”, 2003, 604 p. (In Russ.).
22. Balmasov N.N., Branchugov V.K., Bykadorov M.V. etс. Mineral’nosyr’evaya baza ugol’noi promyshlennosti Rossii: v 2 t. T. 1. Sostoyanie, dinamika, razvitie [Mineral resources base of the coal industry of Russia: in 2 vols. Vol. 1. State, dynamics, development]. Evtushenko A.E., Malyshev Yu.N. eds. Moscow: izd. Moskovskogo gosudarstvennogo gornogo universiteta, 1999, 648 p. (In Russ.).
Review
For citations:
Shubina A.A., Zhuravleva N.V., Korotkov S.G., Lazarevskii P.P., Romanenko Yu.E. Technological suitability of semi-coke as a carbon reducer in production of manganese and silicon alloys. Izvestiya. Ferrous Metallurgy. 2020;63(7):521-258. (In Russ.) https://doi.org/10.17073/0368-0797-2020-7-521-528