Effect of light elements impurity on process of nickel crystallization near the triple interface of grain boundaries: a molecular dynamics simulation
https://doi.org/10.17073/0368-0797-2020-5-357-363
Abstract
About the Authors
I. V. ZoryaRussian Federation
Cand. Sci. (Eng.), Assist. Professor, Director the Institute of Architecture and Construction
Novokuznetsk, Kemerovo Region
G. M. Poletaev
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Head of the Chair of Advanced Mathematics and Mathematical Modeling
Barnaul, Altai Territory
M. D. Starostenkov
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Head of the Chair of Physics
Barnaul, Altai Territory
R. Yu. Rakitin
Russian Federation
Cand. Sci. (Phys.-math.), Assist. Professor, Director of College
Barnaul, Altai Territory
D. V. Kokhanenko
Russian Federation
Cand. Sci. (Phys.-math.), Assist. Professor
Moscow
References
1. Palumbo G., Aust K.T. A coincident axial direction (CAD) approach to the structure of triple junctions in polycrystalline materials. Scripta Metallurgica et Materialia. 1990, vol. 24, no. 9, pp. 1771–1776.
2. Bokstein B., Ivanov V., Oreshina O., Peteline A., Peteline S. D rect experimental observation of accelerated Zn diffusion along triple junctions in Al. Materials Science and Engineering: A. 2001, vol. 302, no. 1, pp. 151–153.
3. Bokstein B.S., Rodin A.O., Straumal B.B. Diffusion controlled grain triple junctions wetting in metals. Defect and Diffusion Forum. 2011, vol. 309-310, pp. 231–238.
4. Wegner M., Leuthold J., Peterlechner M., Song X., Divinski S.V., Wilde G. Grain boundary and triple junction diffusion in nanocrystalline copper. Journal of Applied Physics. 2014, vol. 116, pp. 093514-1–093514-7.
5. Beke D.L., Lakatos A., Erdelyi G., Makovecz A., Langer G.A., Daroczi L., Vad K., Csik A. Investigation of grain boundary diffusion in thin films by SNMS technique. Defect and Diffusion Forum. 2011, vol. 312-315, pp. 1208–1215.
6. Fedorov A.A., Gutkin M.Yu., Ovid’ko I.A. Triple junction diffusion and plastic flow in fine-grained materials. Scripta Materialia. 2002, vol. 47, pp. 51–55.
7. Gusev A.I. Effects of the nanocrystalline state in solids. PhysicsUspekhi. 1998, vol. 41, no. 1, pp. 49–76.
8. Li M., Xu T. Topological and atomic scale characterization of grain boundary networks in polycrystalline and nanocrystalline materials. Progress in Materials Science. 2011, vol. 56, no. 6, pp. 864–899.
9. Gutkin M.Yu., Ovid’ko I.A. Yield strength and plastic deformation of nanocrystalline materials. Uspekhi mekhaniki. 2003, no. 1, pp. 68–125. (In Russ.).
10. Rodriguez P., Sundararaman D., Divakar R., Raghunathan V.S. Structure of grain boundaries in nanocrystalline and quasicrystalline materials. Chemistry for Sustainable Development. 2000, vol. 8, pp. 69–72.
11. Schaefer H.-E., Wurschum R, Birringer R., Gleiter H. Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy. Physical Review B. 1988, vol. 38, no. 14-15, article 9545.
12. Muktepavela F., Bakradze G., Sursaeva V. Micromechanical properties of grain boundaries and triple junctions in polycrystalline metal exhibiting grain-boundary sliding at 293 K. Journal of Materials Science. 2008, vol. 43, pp. 3848–3854.
13. Poletaev G.M., Novoselova D.V., Zorya I.V., Starostenkov M.D. Formation of the excess free volume in triple junctions during nickel crystallization. Physics of the Solid State. 2018, vol. 60, no. 5, pp. 847–851.
14. Psakhie S.G., Zolnikov K.P., Kryzhevich D.S., Korchuganov A.V. Key role of excess atomic volume in structural rearrangements at the front of moving partial dislocations in copper nanocrystals. Scientific Reports. 2019, vol. 9, pp. 3867-1–3867-6.
15. Poletaev G., Zorya I., Rakitin R. Molecular dynamics study of migration mechanism of triple junctions of tilt boundaries in FCC metals. Computational Materials Science. 2018, vol. 148, pp. 184–189.
16. Kozlov E.V., Koneva N.A., Popova N.A. Grain structure, geometrically necessary dislocations and second-phase particles in polycrystals of micro- and mesolevels. Physical Mesomechanics. 2009, vol. 12, no. 5-6, pp. 280-292.
17. Goldschmidt H.J. Interstitial alloys. London: Butterworth-Heinemann, 1967, 640 p. (Russ. ed.: Goldschmidt H.J. Splavy vnedreniya. Moscow: Mir, 1971, 424 p.).
18. Toth L.E. Transition metal carbides and nitrides. New York: Academic Press, 1971, 276 p.
19. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys. Physical Review B. 1993, vol. 48, no. 1, pp. 22–33.
20. Poletaev G.M., Zorya I.V., Rakitin R.Y., Iliina M.A. Interatomic potentials for describing impurity atoms of light elements in FCC metals. Materials Physics and Mechanics. 2019, vol. 42, no. 4, pp. 380–388.
21. Poletaev G.M., Zorya I.V., Novoselova D.V., Starostenkov M.D. Molecular dynamics simulation of hydrogen atom diffusion in crystal lattice of fcc metals. International Journal of Materials Research. 2017, vol. 108, no. 10, pp. 785–790.
22. Poletaev G.M., Zorya I.V., Starostenkov M.D., Rakitin R.Yu., Tabakov P.Ya. Molecular dynamics simulation of the migration of tilt grain boundaries in Ni and Ni3Al. Journal of Experimental and Theoretical Physics. 2019, vol. 128, no. 1, pp. 88–93.
23. Ruda M., Farkas D., Garcia G. Atomistic simulations in the Fe–C system. Computational Materials Science. 2009, vol. 45, no. 2, pp. 550–560.
24. Vashishta P., Kalia R.K., Nakano A., Rino J.P. Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. Journal of Applied Physics. 2008, vol. 103, no. 8, pp. 083504.
25. San Miguel M.A., Sanz J.F. Molecular-dynamics simulations of liquid aluminum oxide. Physical Review B. 1998, vol. 58, pp. 2369–2371.
26. Chan W.-L., Averback R.S., Cahill D.G., Ashkenazy Y. Solidification velocities in deeply undercooled silver. Physical Review Letters. 2009, vol. 102, no. 9, article 095701.
Review
For citations:
Zorya I.V., Poletaev G.M., Starostenkov M.D., Rakitin R.Yu., Kokhanenko D.V. Effect of light elements impurity on process of nickel crystallization near the triple interface of grain boundaries: a molecular dynamics simulation. Izvestiya. Ferrous Metallurgy. 2020;63(5):357-363. (In Russ.) https://doi.org/10.17073/0368-0797-2020-5-357-363