Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Technological modes of metals direct reduction in an aggregate of jet-emulsion type

https://doi.org/10.17073/0368-0797-2020-5-364-372

Abstract

The paper presents the method and instrumental system for modeling and optimizing technological modes of direct metal reduction processes in a jet-emulsion aggregate (JER). Stages of the method are considered. The first one is the problem statement: formation of target conditions, choice of the process type, the task and system of optimization criteria. The second stage includes selection of the object of study: setting parameters of input and output flows, process parameters, stages and subprocesses. The third one includes thermodynamic modeling to assess the final equilibrium state in which optimization problem is solved to determine the best conditions for implementation of the processes of metal reduction from oxides in model systems. The fourth stage is development of metallurgical technology (finding the optimum modes and ways for achieving these modes by specified output stream parameters). And the final one is process optimization in technical and economic indicators. As part of the fourth stage, the complex of mathematical models has been developed that reflects relationship of flows and processes in a metallurgical unit. The structure of instrumental system is presented, in which mathematical models and an algorithm for determining optimal technological modes are implemented. A set of optimization criteria has been developed and a scheme for solving two types of optimization problems are presented: finding optimal conditions for reduction processes in thermodynamic systems and determining optimal modes of direct metal reduction. Application of the method to develop optimal technological modes of direct metal production in a JER-type aggregate is shown: metal production from cast iron and mill scale; direct reduction of metal from dusty ores and iron-containing man-made materials; obtaining manganese alloys from carbonate and oxide ores; processing titanium-magnetite concentrates with an almost complete separation of iron-containing and titaniumcontaining component; and direct reduction of iron with associated production of high-calorie synthesis gas.

About the Authors

I. A. Rybenko
Siberian State Industrial University
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair of Applied Information Technology and Programming

Novokuznetsk, Kemerovo Region



Hans­-Görg Roos
Technische Universität Dresden
Germany

Ph.D, Professor of Mathematics

Dresden, Sachsen



References

1. Yusfin Yu.S., Gimmel’farb A.A., Pashkov N.F. Novye protsessy polucheniya metalla [New processes of metal production]. Moscow: Metallurgiya, 1994, 320 p. (In Russ.).

2. Lisienko V.G., Solov’eva N.V., Trofimova O.G. Al’ternativnaya metallurgiya: problema legirovaniya, model’nye otsenki effektivnosti [Alternative metallurgy: problem of alloying, model effectiveness evaluation]. Moscow: Teplotekhnik, 2007, 440 p. (In Russ.).

3. Processes of predominantly liquid-phase reduction of iron. Tekhnicheskie nauki. Metallurgiya i obrabotka metallov [Technical science. Metallurgy and metal processing]. Available at URL: http://knigi.link/obrabotka-metallov-metallurgiya/protsessyi-preimuschestvenno-jidkofaznogo-12575.html. (Accessed: 09.04.2020). (In Russ.).

4. Knyazev V.F., Gimmel’farb A.I., Nemenov A.M. Beskoksovaya metallurgiya zheleza [Non-coking metallurgy of iron]. Moscow: Metallurgiya, 1972, 272 p. (In Russ.).

5. Romenets V.A. Protsess Romelt [Romelt process]. Moscow: ID Ruda i Metally, 2005, 400 p. (In Russ.).

6. Tsymbal V.P., Mochalov S.P., Rybenko I.A. etc. Protsess SER metallurgicheskii struino-emul’sionnyi reaktor [JER process – metallurgical jet-emulsion reactor]. Moscow: Metallurgizdat, 2014, 488 p. (In Russ.).

7. Сhemical WorkBench. Available at URL: http://www.kintech.ru/. (Accessed: 09.04.2020).

8. NIST-JANAF. Available at URL: http://webbook.nist.gov. (Accessed: 09.04.2020).

9. NASA CEA. Available at URL: http://www.lerc.nasa.gov/WWW/CEAWeb/. (Accessed: 09.04.2020).

10. MTDATA. Available at URL: http://www.npl.co.uk/npl/cmmt/mtdata/mtdata.htm. (Accessed: 09.04.2020).

11. Thermo-Calc. Available at URL: http://www.thermocalc.se. (Accessed: 09.04.2020).

12. MALT2. Available at URL: http://www.kagaku.com/malt. (Accessed: 09.04.2020).

13. HSC Chemistry. Available at URL: http://www.outokumpu.fi/hsc/. (Accessed: 09.04.2020).

14. EQS4WIN. Available at URL: http://www.mathtrek.com/. (Accessed: 09.04.2020).

15. ThermoChemical Calculator. Available at URL: http://blue.caltech.edu/tcc/index.html. (Accessed: 09.04.2020).

16. F*A*C*T. Available at URL: http://www.crct.polymtl.ca/fact/fact.htm. (Accessed: 09.04.2020).

17. Rybenko I.A. Razvitie teoreticheskikh osnov i razrabotka resursosberegayushchikh tekhnologii pryamogo vosstanovleniya metallov s ispol’zovaniem metoda i instrumental’noi sistemy modelirovaniya i optimizatsii. Avtoref. dis... dokt. tekhn. nauk [Development of theoretical foundations and resource-saving technologies for direct reduction of metals using method and instrumental system of modeling and optimization. Extended Abstract of Dr. Sci. Diss.]. Novokuznetsk, 2018, 40 p. (In Russ.).

18. Rybenko I.A. “Engineering-Metallurgy” instrumental system for a wide range of optimization tasks. In: Metallurgiya: tekhnologii, innovatsii, kachestvo: tr. XX mezhdunar. nauch.-prakt. konf. Ch. 1. [Metallurgy: technology, innovation, quality: Papers of the XX Int. Sci.-Pract. Conf. Part 1]. Novokuznetsk: ITs SibGIU, 2017, pp. 75–81. (In Russ.).

19. Trusov B.G. TERRA software system for modeling phase and chemical equilibria at high temperatures. In: III mezhd. simpozium “Gorenie i plazmokhimiya”, 24 – 26 avgusta 2005, Almaty, Kazakhstan [III Int. Symposium “Combustion and Plasma Chemistry”. August 24 – 26, 2005, Almaty, Kazakhstan]. Almaty: izd. Kazak universiteti, 2005, pp. 52–58. (In Russ.).

20. Rybenko I.A. Development of optimal technological modes for producing metals using methods of mathematical modeling and instrumental systems. Chernaya metallurgiya. Byul. in-ta “Chermetinformatsiya”. 2018, no. 2, pp. 57–61. (In Russ.).


Review

For citations:


Rybenko I.A., Roos H. Technological modes of metals direct reduction in an aggregate of jet-emulsion type. Izvestiya. Ferrous Metallurgy. 2020;63(5):364-372. (In Russ.) https://doi.org/10.17073/0368-0797-2020-5-364-372

Views: 629


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)