Theoretical foundations for energy-efficient production of railway rails with improved performance properties
https://doi.org/10.17073/0368-0797-2020-5-318-326
Abstract
About the Authors
A. A. UmanskiiRussian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Ferrous Metallurgy
Novokuznetsk, Kemerovo Region
V. V. Dorofeev
Russian Federation
Dr. Sci. (Eng.), Chief Calibrator of Rail and Beam Shop
Novokuznetsk, Kemerovo Region
L. V. Dumova
Russian Federation
Senior Lecturer of the Chair “Management and Branch Economy”
Novokuznetsk, Kemerovo Region
References
1. Polevoi E.V., Yunin G.N., Golovatenko A.V., Temlyantsev M.V. New rail products at AO EVRAZ ZSMK. Steel in Translation. 2019, vol. 49, no. 7, pp. 484–488.
2. Polevoi E.V., Yunin G.N., Temlyantsev M.V. Development and commercial introduction of technology for differentiated heat treatment of railway rails with rolling heat utilization. Izvestiya. Ferrous Metallurgy. 2016, vol. 59, pp. 704–714. (In Russ.).
3. Smirnov L.A., Rovnushkin V.A., Dobuzhskaya A.B., Yunin G.N., Polevoi E.V., Boikov D.V., Spirin, S.A. Influence of rare-earth modification on the formation of nonmetallic inclusions in high-carbon steel. Steel in Translation. 2016, vol. 46, no. 11, pp. 805–813.
4. Li W.-G., Feng N., Zhao Y.-T., Yan B.-K. Prediction of deformation resistance during hot rolling process based on generalized additive model. Journal of Iron and Steel Research. 2018, vol. 30, no. 6, pp. 447–452.
5. Liu C., Li W.-G., Wang B., Zhang L.-L. Prediction of deformation resistance for hot rolled strip based on ANFIS. In: Proceedings of the 12 th IEEE Conf. on Industrial Electronics and Applications, ICIEA 2017. 2018, pp. 1701–1705.
6. Shkatov V.V., Mazur I.P., Chetverikova T.S., Knapinski M. Simulation of dynamic recrystallization and resistance to deformation of carbon and low-alloyed steels during hot forming. Chernye Metally. 2018, no. 11, pp. 22–27. (In Russ.).
7. Ghadar S., Momeni A., Tolaminejad B., Soltanalinezhad M.A. Comparative study on the hot deformation behavior of 410 stainless and K100 tool steels. Materials Science and Engineering A. 2019, vol. 760, pp. 394–406.
8. Konovalov A.V., Smirnov A.S., Parshin V.S., Dronov A.I., Karamyshev A.P., Nekrasov I.I., Fedulov A.A., Serebryakov A.V. Study of the resistance of steels 18KhMFB and 18Kh3MFB to hot deformation. Metallurgist. 2016, vol. 59, no. 11-12, pp. 1118–1121.
9. Konovalov A.V., Smirnov A.S. Viscoplastic model for the strain resistance of 08KH18N10T steel at a hot-deformation temperature. Russian metallurgy (Metally). 2008, vol. 2008, no. 2, pp. 138–141.
10. Safronov A.A., Belskiy S.M., Chernyj V.A., Mazur I.P. Modeling of temperature influence on resistance to plastic deformation of electrotechnical steels in hot rolling. Journal of Physics: Conf. Series. 2018, vol. 1134, no. 1, article 012050.
11. Rodriguez-Ibabe J.M., Gutiérrez I., López B., Iza-Mendia A. Modeling of the resistance to hot deformation and the effects of microalloying in high-al steels under industrial conditions. Materials Science Forum. 2005, vol. 500-501, pp. 195–202.
12. Kumar S., Aashranth B., Samantaray D., Davinci M., Borah U., Bhaduri A.K. Investigation on grain boundary character distribution during dynamic recrystallization of austenitic stainless steel during hot deformation. Materials Performance and Characterization. 2019, vol. 8, no. 5, pp. 796–807.
13. Hermant A., Suzon E., Petit P., Bellus J., Georges E., Cortial F., Sennour M., Gourgues-Lorenzon A.-F. Hot deformation and recrystallization mechanisms in a coarse-grained, niobium stabilized austenitic stainless steel (316Nb). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2019, vol. 50, no. 4, pp. 1625–1642.
14. Kingkam W., Zhao C.-Z., Li H., Zhang H.-X., Li Z.-M. Hot deformation and corrosion resistance of high-strength low-alloy steel. Acta Metallurgica Sinica (English Letters). 2019, vol. 32, no. 4, pp. 495–505.
15. Karpov S.V., Banshchikov A.A., Karpova A.S. Deformation resistance of manganese steels. Polzunovskii al’manakh. 2008, no. 3, pp. 123–126. (In Russ.).
16. Gladkovskii S.V., Potapov A.I., Lepikhin S.V. Studying the deformation resistance of EP679 maraging steel. Diagnostics, Resource and Mechanics of materials and structures. 2015, no. 4, pp. 18–28. (In Russ.).
17. Potapov A.I., Batueva E.A. Deformation resistance of siliconmanganese steels for reinforcement. Zagotovitel’nye proizvodstva v mashinostroenii. 2013, no. 10, pp. 38–40. (In Russ.).
18. Loginov Yu.N., Batueva E.A., Potapov A.I. Deformation resistance of silicon-manganese steel. In: Innovatsii v materialovedenii i metallurgii: Materialy II mezhdunar. interaktiv. nauch.-prakt. konf. [Innovations in Materials Science and Metallurgy: Materials of the II Int. Interactive Sci.-Pract. Conf.]. Ekaterinburg: Izd-vo Ural. un-ta, 2012, pp. 187–190. (In Russ.).
19. Zyuzin V.I., Brovman M.Ya., Mel’nikov A.F. Soprotivlenie deformatsii stalei pri goryachei prokatke [Deformation resistance of steels during hot rolling]. Moscow: Metallurgiya, 1964, 270 p. (In Russ.).
20. Andreyuk V.L., Tyulenev G.G., Pritsker B.S. Analytical dependence of deformation resistance of steels and alloys on their chemical composition. Stal’. 1972, no. 6, pp. 522–523. (In Russ.).
21. Migachev B.A. Soprotivlenie deformatsii v mekhanike obrabotke davleniem [Deformation resistance at forming mechanics]. Ekaterinburg: UrO RAN, 1997, 176 p. (In Russ.).
22. Kalpin Yu.G., Perfilov V.I., Petrov P.A., Ryabov V.A., Filippov Yu.K. Soprotivlenie deformatsii i plastichnost’ metallov pri obrabotke davleniem [Metals resistance to deformation and plasticity at forming]. Moscow: Mashinostroenie, 2011, 244 p. (In Russ.).
23. Ostapenko A.L., Perekhodchenko V.A., Kushnir O.N., Plastun D.A. On applicability of deformation resistance calculation methods for evaluating energy-force conditions of hot strip rolling. Stal’. 2014, no. 5, pp. 41–51. (In Russ.).
24. Ostapenko A.L., Rudenko E.A., Kurdyukova L.A. Influence of methodology for deformation resistance determining on error of calculation of strength of strips and sheets hot rolling. Chernaya metallurgiya. Byul. in-ta “Chermetinformatsiya”. 2013, no. 6, pp. 38–44. (In Russ.).
25. Umanskii A.A., Golovatenko A.V., Simachev A.S., Dorofeev V.V., Oskolkova T.N. Plasticity and deformation resistance of the alloyed rail steels in rolling temperature interval. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 6, pp. 452–460. (In Russ.).
26. Umanskii A.A., Golovatenko A.V., Kadykov V.N. Development of theoretical basis of determining energy-power parameters of rolling at implementation of new grades of rail steel. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 10, pp. 804–810. (In Russ.).
27. Umanskii A.A., Golovatenko A.V., Simachev A.S. Nonmetallic inclusions in rails made of electro-steel alloyed with chromium. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 12, pp. 936–942. (In Russ.).
28. Garost A.I. Non-metallic inclusions and structure formation of modified high-manganese steel. Lit’e i metallurgiya. 2006, no. 1, pp. 75–83. (In Russ.).
29. Umansky A.A., Golovatenko A.V., Kadykov V.N., Dumova L.V. Development of mathematical models and methods for calculation of rail steel deformation resistance of various chemical composition. IOP Conf. Series: Materials Science and Engineering. 2016, vol. 150, article 012029.
30. Brovman M.Ya. Determination of deformation resistance during rolling. Stal’. 2015, no. 6, pp. 40–44. (In Russ.).
Review
For citations:
Umanskii A.A., Dorofeev V.V., Dumova L.V. Theoretical foundations for energy-efficient production of railway rails with improved performance properties. Izvestiya. Ferrous Metallurgy. 2020;63(5):318-326. (In Russ.) https://doi.org/10.17073/0368-0797-2020-5-318-326