Mathematical modeling in education process, research and low-energy metallurgical technologies
https://doi.org/10.17073/0368-0797-2020-5-389-399
Abstract
About the Authors
V. P. TsymbalRussian Federation
Dr. Sci. (Eng.), Professor of the Chair “Applied Information Technologies and Programming”
Novokuznetsk, Kemerovo Region
V. N. Buintsev
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “ lied Information Technologies and Programming”
Novokuznetsk, Kemerovo Region
V. I. Kozhemyachenko
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Applied Information Technologies and Programming”
Novokuznetsk, Kemerovo Region
S. N. Kalashnikov
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Applied Information Technologies and Programming”
Novokuznetsk, Kemerovo Region
P. A. Sechenov
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “ lied Information Technologies and Programming”
Novokuznetsk, Kemerovo Region
References
1. Tsymbal V.P. Control of oxidizing ability of open hearth furnace based on the static model using boiling bath self-regulating. Izvestiya. Ferrous Metallurgy. 1975, no. 4, pp. 162–165. (In Russ.).
2. Kurdyumov S.P., Malinetskii G.G. Sinergetika – teoriya samoorganizatsii [Synergetics – Theory of self-organization]. Мoscow: Znanie, 1983, 64 p. (In Russ.).
3. Nicolis G., Prigogine I. Self-Organization in Non-Equilibrium Systems. New York: Wiley, 1977, 504 p.
4. Haken H. Synergetics. Berlin: Springer, 1978, 351 p.
5. Prigogine I., Stengers I. Order out of Chaos. Man’s New Dialogue with Nature. New York: Bantam Books, 1984, 349 p.
6. Klimontovich Yu.L. Turbulentnoe dvizhenie i struktura khaosa. Novyi podkhod k statisticheskoi teorii otkrytykh sistem [Turbulent motion and chaos structure. A new approach to statistical theory of open systems]. Moscow: Nauka, 1990, 320 p. (In Russ.).
7. Knyazeva E.N., Kurdyumov S.P. Osnovaniya sinergetiki: Rezhimy s obostreniem, samoorganizatsiya, tempomiry [Base of synergetics: Exacerbated modes, self-organization, temp worlds]. St. Petersburg: Aleteiya, 2002, 414 p. (In Russ.).
8. Tsymbal V.P., Mochalov S.P., Rybenko I.A. etc. Protsess SER metallurgicheskii struino-emul’sionnyi reaktor [JER process – metallurgical jet-emulsion reactor]. Moscow: Metallurgizdat, 2014, 488 p. (In Russ.).
9. Tsymbal V.P., Mochalov S.P., Shakirov K.M. Controlling the composition of the metal in the direct reduction of dust-sized materials and waste products in a jet-emulsion reactor. Metallurgist. 2015, vol. 59, no. 1-2, pp. 119−125.
10. Nakoryakov V.E., Pokusaev B.G., Shreiber I.R. Wave propagation in Gas-Liquid Media. Boca Raton: CRC Press, 1993, 222 p.
11. Gordon Ya.M., Spirin N.A., Shvydkii V.S. etc. Scrap metal as an important secondary resource for improving energy efficiency and resource saving in steel industry. In: Metallurgiya: tekhnologii, innovatsii, kachestvo. Ch. 1. [Metallurgy: technology, innovation, quality. Part 1]. Novokuznetsk, 2017, pp. 390–400. (In Russ.).
12. Korostelev A.A., S’emshchikov N.S., Semin A.E. etc. Increase in EAF lining life with use of hot-briquetted iron in a charge. Refractories and Industrial Ceramics. 2018, vol. 59, no. 2, pp. 107–114.
13. Lückhoff J., Apfel J., Buttler J. Application of different kinds of metal charge materials in EAF operation. Chernye metally. 2017, no. 10, pp. 28–33. (In Russ.).
14. Abd Elkader M., Fathy A., Eissa M., Sayed Sh. Effect of direct reduced iron proportion in metallic charge on technological parameters of EAF steelmaking process. ISIJ International. 2016, vol. 5, no. 2, pp. 2016–2024.
15. Sulimova M.A., Litvinova T.E. Metallurgical production waste treatment efficiency increase. Ecology, Economics, Education and Legislation Conference Proceedings, SGEM. 2016, vol. II, pp. 569–575.
16. Duarte P., Beserra Kh. Production of high-carbon iron by direct carbon reduction (DRI) using Energiron DR technology. Chernye metally. 2016, no. 6, pp. 24–30. (In Russ.).
17. Dorofeev G.A., Yantovskii P.R., Smirnov K.G., Stepanov Ya.M. The process “orien” for smelting of high-quality steels from ore and energy raw materials based on the principle of the energy self-supplying. Chernye metally. 2017, no. 5, pp. 17–23. (In Russ.).
18. Kinaci M.E., Lichtenegger T., Schneiderbauer S. Direct reduction of iron-ore in fluidized beds. In: 28 th European Symposium on Computer Aided Process Engineering, Graz, AUSTRIA, 2018, vol. 43, pp. 217–222.
19. Schenck J., Lüngen H. Review of application of DRI processes in EC countries. Chernye metally. 2017, no. 2, pp. 25–31. (In Russ.).
20. Meijer K, van der Stel J., Zeilstra C. etc. The HIsarna ironmaking process. In: Proc. METEC and 2 nd ESTAD, 15–19 June 2015, Düsseldorf, Germany, pp. 15–19.
21. Basdag A., Arol, A.I. Coating of iron oxide pellets for direct reduction. Scandinavian Journal of Metallurgy. 2002, vol. 31, no. 3, pp. 229–233.
22. Rybenko I.A., Olennikov A.A. Inzhiniring – Metallurgiya [Engineering – Metallurgy]. Certificate of state registration of computer program no. 2017617445. 2017. (In Russ.).
23. Vatolin N.A., Moiseev G.K., Trusov B.G. Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh [Thermodynamic modeling in high-temperature inorganic systems]. Moscow: Metallurgiya, 1994, 353 p. (In Russ.).
24. Kroese D.P., Brereton T., Taimre T., Botev Z.I. Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics. 2014, vol. 6, no. 6, pp. 386–392.
25. Tsymbal V., Olennikov A., Rybenko I. etc. Mathematical Modeling of SER Jet-Emulsion Process. In: Sustainable Industrial Processing Summit & Exhibition SIPS 2017. Vol. 9: Iron and Steel, Metals and Alloys. Kongoli F., Conejo A., Gomez-Marroquin M.C. eds. Montreal (Canada): FLOGEN Star Outreach, pp. 104–115.
Review
For citations:
Tsymbal V.P., Buintsev V.N., Kozhemyachenko V.I., Kalashnikov S.N., Sechenov P.A. Mathematical modeling in education process, research and low-energy metallurgical technologies. Izvestiya. Ferrous Metallurgy. 2020;63(5):389-399. (In Russ.) https://doi.org/10.17073/0368-0797-2020-5-389-399