Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Structural transitions in complexly alloyed melts

https://doi.org/10.17073/0368-0797-2020-3-4-261-270

Abstract

The possibility of structural transitions in the metal melts is discussed based on analysis of the temperature dependences of their viscosity, electrical resistance, and surface tension. Mechanism of structural transitions in complexly alloyed melts consists in destruction of microinhomogeneity not only of the structure, but also of the chemical composition. Anomalies in the temperature and concentration dependences of the structurally sensitive properties of metal melts - viscosity, density, electrical resistance, and surface tension - are caused by a change in the melt structure. Branching of the temperature dependences of the structurally sensitive properties of such melts is explained by an irreversible violation of the microinhomogeneous state inherited from the initial multiphase chemically inhomogeneous ingot. Microinhomogeneities that arise due to the predominant interaction of singlesort or not single-sort atoms correspond to short-range order violation in atomic arrangement (SRO) and to a range of 2 - 5 A. Microinhomogeneous state of the metal melts is caused by the segregation of atoms of fluctuation nature without clear interphase boundaries (by clusters), and is associated with violation of the middle order (MRO) and with a range of 5 - 20 A. Microheterogeneous state of the melt, which is characterized by the presence of dispersed particles enriched by one of the components suspended in an environment of a different composition and separated from it by a interfacial surface, corresponds to the long-range order (LRO) and to a range of more than 20 A. Structural transitions in metal melts can also be understood as “liquid - liquid” phase transitions in terms of competition between two homogeneous liquid phases, which differ in the magnitude of the enthalpy, which varies with increasing temperature. Liquid - liquid phase transitions are observed depending on the temperature background of the melt. Branching of the temperature dependences of viscosity, density, and surface tension, measured during heating and subsequent cooling of the melt, is also the result and evidence of the liquid-liquid phase transition. The author proposes an algorithm for a priori analysis of the temperature dependences of viscosity, electrical resistance, and surface tension of complexly alloyed melts based on their structure.

About the Author

O. A. Chikova
Ural Federal University named after the first President of Russia B.N. Yeltsin; Ural State Pedagogical University
Russian Federation

Dr. Sci. (Phys.-Math.), Professor of the Chair of Physics, Chief Researcher.

Ekaterinburg



References

1. Khosravani A., Cecen A., Kalidindi S.R. Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: Application to dual-phase steels. ActaMaterialia. 2017, vol. 123, pp. 55-69.

2. Vertman A.A., Samarin A.M. Svoistva rasplavov zheleza [Proper- 18. ties of iron melts]. Moscow: Nauka, 1969, 280 p. (In Russ.).

3. Gel’d P.V., Baum B.A., Petrushevskii M.S. Rasplavy ferrosplavno-go proizvodstva [Melts of ferroalloy production]. Moscow: Metallurgiya, 1973, 288 p. (In Russ.).

4. Arsent’ev P.P., Koledov L.A. Metallicheskie rasplavy i ikh svoistva [Metal melts and their properties]. Moscow: Metallurgiya, 1976, 376 p. (In Russ.).

5. Ershov G.S., Bychkov Yu.B. Fiziko-khimicheskie osnovy ratsional’nogo legirovaniya stalei i splavov [Physicochemical foundations of rational alloying of steels and alloys]. Moscow: Metallurgiya, 1982, 376 p. (In Russ.).

6. Regel’ A.R., Glazov V.M. Zakonomernosti formirovaniya struktury elektronnykh rasplavov [Formation patterns of electronic melts structure]. Moscow: Nauka, 1982, 320 p. (In Russ.).

7. Baum B.A. Zhidkaya stal’ [Liquid steel]. Moscow: Metallurgiya, 1984, 208 p. (In Russ.).

8. Ostrovskii O.I., Grigoryan V.A., Vishkarev A.F. Svoistva metalli-cheskikh rasplavov [Properties of metal melts]. Moscow: Metallurgiya, 1988, 304 p. (In Russ.).

9. Wilson J.R. The Structure of Liquid Metals and Alloys. Metall. Rev., 1965. (Russ.ed.: Wilson J.R. Struktura zhidkikh metallov i splavov. Moscow: Metallurgiya, 1972, 247 p.).

10. Dutchak Ya.I. Rentgenografiya zhidkikh metallov [X-ray analysis of liquid metals]. L’vov: Vishcha shkola, 1977, 162 p. (In Russ.).

11. Popel’ S.I., Spiridonov M.A., Zhukova L.A. Atomnoe uporyadoche-nie v rasplavlennykh i amorfnykh metallakh po dannym elektrono-grafii [Atomic ordering in molten and amorphous metals according to electron diffraction data]. Ekaterinburg: UGTU-UPI, 1997, 384 p. (In Russ.).

12. Chikova O.A. Structural transitions in liquid metals and alloys. Rasplavy. 2009, no. 1, pp. 18-29. (In Russ.).

13. Li M.Y., Zhang Y.X., Wu C., Geng H.R. Effect of liquid-liquid structure transition on solidification of Sn57Bi43 alloy. Applied Physics A-Materials Science & Processing. 2016, vol. 122, no. 3, article 171.

14. Yu Q., Ahmad A.S., Stahl K., Wang X.D., Su Y., Glazyrin K., Lier-mann H.P., Franz H., Cao Q.P., Zhang D.X., Jiang J.Z. Pressure-induced structural change in liquid Gain eutectic alloy. Scientific Reports. 2017, vol. 7, article 1139.

15. Xiong L.H., Wang X.D., Yu Q., Zhang H., Zhang F., Sun Y., Cao Q.P., Xie H.L., Xiao T.Q., Zhang D.X., Wang C.Z., Ho K.M., Ren Y., Jiang J.Z. Temperature-dependent structure evolution in liquid gallium. Acta Materialia. 2017, vol. 128, pp. 304-312.

16. Jia P., Zhang J.Y., Geng H.R., Yang Z.X., Teng X.Y., Zhao D.G., Wan Y., Zuo M., Sun N.Q. Effect of melt superheating treatment on solidification structures of Al75Bi9Sn16 immiscible alloy. Journal of Molecular Liquid. 2017, vol. 232, pp. 457-461.

17. Jie Z.Q., Zhang J., Huang T.W., Liu L., Zu H.Z. The influence of melt superheating treatment on the cast structure and stress rupture property of IN718C superalloy. Journal of Alloys and Compounds. 2017, vol. 706, pp. 76-81.

18. Han G., Liu X. Phase control and formation mechanism of Al--Mn (-Fe) intermetallic particles in Mg-Al-based alloys with FeCl3 addition or melt superheating. Acta Materialia. 2016, vol. 114, pp. 54-66.

19. Su H., Wang H., Zhang J. etc. Influence of melt superheating treatment on solidification characteristics and rupture life of a third-generation Ni-based single-crystal superalloy. Metallurgical and Material TransactionsB. 2018, vol. 49, no. 4, pp. 1537-1546.

20. Dahlborg U., Calvo-Dahlborg M., Eskin D.G., Popel P.S. Thermal melt processing of metallic alloys. Springer Series in Materials Science. 2018, vol. 273, pp. 277-315.

21. Lykasov D.K. Chikova O.A. Optimization of alloying technology for alloy 2124 with manganese based on the study of relation between the structure and properties of liquid and cast metal. Ras-plavy. 2009, no. 1, pp. 31-35. (In Russ.).

22. Konashkov V.V., Tsepelev V.S., Chikova O.A., Belonosov A.V. Influence of microstructure and melt viscosity on the mechanical properties of cast 40Х24Н12СЛ steel components. Steel in Translation. 2015, vol. 45, no. 3, pp. 179-184.

23. Vertman A.A., Samarin A.M., Turovskii B.M. Structure of liquid alloys of Fe-C system. Izv. ANSSSR. OTN.: Metallurgiya i toplivo. 1960, no. 6, pp. 123-129. (In Russ.).

24. Dahlborg U., Besser M., Calvo-Dahlborg M., Cuello G., Dew-hurst C.D., Kramer M.J., Morris J.R. Structure of molten Al-Si alloys. Journal of Non-Crystalline Solids. 2007, vol. 353, no. 32-40, pp. 3005-3010.

25. Chikova O.A., Tsepelev V.S., Moskovskikh O.P. Estimating the parameters of the microheterogeneous structure of metal melts according to viscometric experimental data in terms of the absolute reaction rate theory. Russian Journal of Physical Chemistry A. 2017, vol. 91, no. 6, pp. 979-983.

26. Chikova O.A., Sinitsin N.I., V’yukhin V.V. Parameters of the Microheterogeneous Structure of Liquid 110G13L Steel. Russian Journal of Physical Chemistry A. 2019, vol. 93, no. 8, pp. 1435-1442.

27. Lan S. etc. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Applied Physics Letters. 2016, vol. 108, no. 21, pp. 211907.

28. Albert S., Bauer Th., Michl M., Biroli G., Bouchaud J.-P., Loidl A., Lunkenheimer P., Tourbot R., Wiertel-Gasquet C., Ladieu F. Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science. 2016, vol. 352, no. 6291, pp. 1308-1311.

29. Robert F. Tournier. Glass phase and other multiple liquid-to-liquid transitions resulting from two-liquid phase competition. Chemical Physics Letters. 2016, vol. 665, pp. 64-70.

30. Robert F. Tournier. First-order transitions in glasses and melts induced by solid superclusters nucleated and melted by homogeneous nucleation instead of surface melting. Chemical Physics. 2019, vol. 524, pp. 40-54.

31. Zu F.-Q. Temperature-induced liquid-liquid transition in metallic melts: a brief review on the new physical phenomenon. Metals. 2015, vol. 5, pp. 395-417.

32. Nefedov D.Y., Podorozhkin D.Y., Charnaya E.V., Uskov A.V., Haase J., Kumzerov Y.A., Fokin A.V. Liquid-liquid transition in supercooled gallium alloys under nanoconfinement. Journal of Physics Condensed Matter. 2019, vol. 31, no. 25, article 255101.

33. Iida T., Guthrie R.I.L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993.

34. Bian X., Sun M., Xue X., Qin X. Medium-range order and viscosity of molten Cu-23 % Sn alloy. Materials Letters. 2003, vol. 57, no. 13-14, pp. 2001-2006.

35. Born M., Green H.S. A general kinetic theory of liquids III. Dynamical properties. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1947, vol. 190, no. 1023, pp. 455-474.

36. Elliott S.R. Medium-range structural order in covalent amorphous solids. Nature. 1991, vol. 354, no. 6353, p. 445.

37. Steeb S., Entress H. Atomverteilung sowie spezifischer elekt-rischer widerstand geschmolzener Magnesium-Zinn-Legietungen. Z. Metallkde. 1966, vol. 57, pp. 803-807. (In Germ.)

38. Hoyer W., Jodicke R. Short-range and medium-range order in liquid Au-Ge alloys. Journal of Non-Crystalline solids. 1995, vol. 192, pp. 102-105.

39. Alblas B.P. etc. Structure of liquid Na-Sn alloys. Journal of Physics F: Metal Physics. 1983, vol. 13, no. 12, p. 2465.

40. Adam G., Gibbs J.H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. The Journal of Chemical Physics. 1965, vol. 43, no. 1, pp. 139-146.

41. Cheng S.-J., Biana X.-F., Zhanga J.-X., Qina X.-B., Wang Z.-H. Correlation of viscosity and structural changes of indium melt. Ma-terialsLetters. 2003, vol. 57, no. 26-27, pp. 4191-4195.

42. Eyring H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. The Journal of Chemical Physics. 1936, vol. 4, no. 4, pp. 283-291.

43. Doolittle A.K. Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. Journal of Applied Physics. 1951, vol. 22, no. 12, pp. 1471-1475.

44. Cohen M.H., Grest G.S. Liquid-glass transition, a free-volume approach. Physical Review B. 1979, vol. 20, no. 3, p. 1077.

45. Nishimura S., Matsumoto S., Terashima K. Variation of silicon melt viscosity with boron addition. Journal of Crystal Growth. 2002, vol. 237-239, Part 3, pp. 1667-1670.

46. Xiaolin Z., Xiufang B., Changchun W., Yunfang L. The evolution of coordination structure in liquid GaSn alloy. Chinese Journal of Physics. 2018, vol. 56, no. 6, pp. 2684-2688.

47. Jia P., Geng H., Ding Y., Li M., Wang M., Zhang S. Liquid structure feature of Zn-Bi alloys with resistivity and viscosity methods. Journal of Molecular Liquids. 2016, vol. 214, pp. 70-76.

48. Ziman J.M. A theory of the electrical properties of liquid metals. I: the monovalent metals. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1961, S. 8, vol. 6, no. 68, pp. 1013-1034.

49. Shimoji M. Liquid Metals. An Introduction to the Physics and Chemistry of Metals in the Liquid State. London: Academic Press, 1977, 391 p.

50. Faber T.E., Ziman J.M. A theory of the electrical properties of liquid metals. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1965, vol. 11, no. 109, pp. 153-173.

51. Kittel C. etc. Introduction to Solid State Physics. 8 ed. New York: Wiley, 1976, 704 p.

52. Springer Handbook of Electronic andPhotonic Materials. Kasap S., Capper P. eds. Springer, 2017.

53. Jia P., Geng H., Ding Y., Li M., Wang M., Zhang S. Liquid structure feature of Zn-Bi alloys with resistivity and viscosity methods. Journal of Molecular Liquids. 2016, vol. 214, pp. 70-76.

54. Jia P., Zhang J., Teng X., Zhao D., Wang Y., Hu S., Xiang J., Zhang S., Hu X. Liquid phase transition of Sn50Bi50 hypereutectic alloy and its thermodynamic and kinetic aspects. Journal of Molecular Liquids. 2018, vol. 251, pp. 185-189.

55. Borovykh M.A., Chikova O.A., Tsepelev V.S., V’yukhin V.V. Measurement of the electrical resistivity of liquid 32G2 and 32G1 steels by the rotating magnetic field method. Russian Metallurgy (Metal-ly). 2017, vol. 2017, no. 3, pp. 175-178.

56. Chikova O., Tsepelev V., V’yukhin V., Shmakova K., Il’in V. Viscosity and electrical resistivity of liquid CuNiAl, CuNiAlCo, Cu-NiAlCoFe alloys of equiatomic compositions. Acta Metallurgica Slovaca. 2019, vol. 25, no. 4, pp. 259-266.

57. Mudryi S.I., Lytvyn M.A. Influence of low nickel contents on the surface tension and density of nickel-indium melts. Ukrainian Journal of Physics. 2017, vol. 62, no. 2, pp. 118-118.

58. Ning Z., Ming-Liang H., Hai-Tao M., Xue-Min P., Xiao-Ying L. Viscosities and wetting behaviors of Sn-Cu solders. Acta Physica Sinica. 2013, vol. 62, no. 8, article 086601.

59. Yang J., Wang Y., Huang J., Wang W., Ye Z., Chen S., Zhao Y. Investigation on viscosity, surface tension and non-reactive wettability of melting Ag-Cu-X wt % Ti active filler metals. Journal of Alloys and Compounds. 2019, vol. 772, pp. 438-446.

60. Takamichi Iida, Roderick I.L. Guthrie. The Physical Properties of Liquid Metals. Clarendon Press, 1988, 288 p.

61. Abtew M., Selvaduray G. Lead-free solders in microelectronics. Material Science Engineering: Reports. 2000, vol. 27, no. 5-6, pp. 95-141.

62. Summ B.D. New correlations of surface tension with bulk properties of liquid. VestnikMGU. Ser 2. Khimiya. 1999, vol. 40, no. 6, pp. 400-405. (In Russ.).

63. V’yukhin V.V., Chikova O.A., Tsepelev V.S. Surface tension of liquid high-entropy equiatomic alloys of a Cu-Sn-Bi-In-Pb system. Russian Journal of Physical Chemistry A. 2017, vol. 91, no. 4, pp. 613-616.


Review

For citations:


Chikova O.A. Structural transitions in complexly alloyed melts. Izvestiya. Ferrous Metallurgy. 2020;63(3-4):261-270. (In Russ.) https://doi.org/10.17073/0368-0797-2020-3-4-261-270

Views: 747


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)