Thermodynamic analysis of liquid steel refining by complex alloy containing La - Ce -Al
https://doi.org/10.17073/0368-0797-2020-3-4-238-247
Abstract
Alloys containing rare-earth metals (REM) are increasingly used in production of steels and alloys. After modification and microalloying of steel with REM, structure of primary metal is refined, its mechanical characteristics are upgraded, concentration of oxygen dissolved in liquid iron is decreased significantly, and originated nonmetallic inclusions do not exceed several microns in size and are of predominantly globular shape. Due to relatively high cost of REM, it is proposed to calculate their consumption at each stage of technological process to determine optimal amount required for deoxidation or modification. In this work, thermodynamic modeling of phase equilibria in liquid metal of Fe - La - Ce -Al - O system has been performed. The authors provide a base of thermodynamic data of the system under study: temperature dependences of the equilibrium constants of reactions between the components, values of the first-order interaction parameters (according to Wagner) for elements in liquid iron, values of energy parameters of the theory of subregular (for oxide melt) and regular (for solid solution) ionic solutions. Based on coordinates of calculated isothermal (1600 °С) isostructural (0.01 wt. % aluminum) cross section of solubility surface of components in metal (SSCM) of the Fe - La - Ce -Al - O system, lanthanum and cerium flow diagrams were constructed for various initial oxygen concentrations (metal is pre-deoxidized with aluminum). It has been shown that costs of expensive REM used in microalloying and metal modification strongly depend on composition of the initial metal.
About the Authors
G. G. MikhailovRussian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair of Material Science and Physical Chemistry of Materials.
Chelyabinsk
L. A. Makrovets
Russian Federation
Engineer of the Chair of Materials Science and Physical Chemistry of Materials.
Chelyabinsk
O. V. Samoilova
Russian Federation
Cand. Sci. (Chem.), Senior Researcher of the Chair of Materials Science and Physical Chemistry of Materials.
Chelyabinsk
References
1. Pan F., Zhang J., Chen H.L., Su Y.H., Kuo C.L., Su Y.H., Chen S.H., Lin K.J., Hsieh P.H., Hwang W.S. Effects of rare earth metals on steel microstructures. Materials. 2016, vol. 9, no. 6, pp. 417.
2. Smirnov L.A., Rovnushkin V.A., Oryshchenko A.S., Kalinin G.Yu., Milyuts V.G. Modification of steel and alloys with rare-earth elements. Part 1.Metallurgist. 2016, vol. 59, no. 11-12, pp. 1053-1061.
3. Ryabchikov I.V., Mizin V.G., Andreev V.V. Kremnistye ferrosplavy i modifikatory novogo pokoleniya. Proizvodstvo i primenenie [Siliceous ferroalloys and new generation modifiers. Production and application]. Chelyabinsk: Izd-vo Chelyabinskogo gos. un-ta, 2013, 295 p. (In Russ.).
4. Serov G.V., Komissarov A.A., Tikhonov S.M., Sidorova E.P., Kush-nerev I.V., Mishnev P.A., Kuznetsov D.V. Effect of deoxidation on composition of non-metallic inclusions in low alloy steel. Novye og-neupory. 2018, no. 12, pp. 3-8. (In Russ.).
5. Golubtsov V.A., Voronin A.A., Tetyueva T.V., Roshchin V.E., Usmanov R.G. Origin of nonmetallic inclusions and ways of alleviating their contamination of steel. Metallurgist. 2005, vol. 49, no. 3-4, pp. 149-155.
6. Golubtsov V.A., Shub L.G., Deryabin A.A., Usmanov R.G. Treating steel outside the furnace more efficiently. Metallurgist. 2006, vol. 50, no. 11-12, pp. 634-637.
7. Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. Termodinamika metallurgicheskikh protsessov i sistem [Thermodynamics of metallurgical processes and systems]. Moscow: ID MISiS, 2009, 519 p. (In Russ.).
8. Mikhailov G.G., Makrovets L.A., Samoilova O.V. Phase equilibria in a liquid metal of Fe-La-Ce-O system at 1600 °C. Solid State Phenomena. 2020, vol. 299, pp. 468-474. (In Russ.).
9. Mikhailov G.G., Makrovets L.A., Smirnov L.A. Thermodynamic modeling of lanthanum interaction processes using iron-based metallic melts. Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 12, pp. 877-884. (In Russ.).
10. Mikhailov G.G., Makrovets L.A., Smirnov L.A. Thermodynamic modelling of rare-earth elements - oxygen interaction. Mater. Sci. Forum. 2016, vol. 843, pp. 39-45.
11. Minkova N., Aslanian S. Isomorphic substitutions in the CeO2-La2O3 system at 850 °C. Cryst. Res. Technol. 1989, vol. 24, no. 4, pp. 351-354.
12. Du Y., Yashima M., Koura T., Kakihana M., Yoshimura M. Measurement and calculations of the ZrO2-CeO2-LaO15 phase diagram. Calphad. 1996, vol. 20, no. 1, pp. 95-108.
13. Fischer W.A., Hoffmann A. Das Zustandsschaubild Eisenoxy-dul-Aluminiumoxyd. Arch. Eisenhuttenwes. 1956, vol. 27, no. 5, pp. 343-346. (In Germ.).
14. Rosenbach K., Schmitz J.A. Untersuchungen im Dreistoffsystem Eisen (II)-oxid-chrom (III)-oxid-tonerde. Arch. Eisenhuttenwes. 1974, vol. 45, no. 12, pp. 843-847. (In Germ.).
15. Novokhatskii I.A., Belov B.F., Gorokh A.V., Savinskaya A.A. To the diagram of phase equilibria of FeO-Al2O3 system. Zhurnal fizicheskoi khimii. 1965, vol. 39, no. 11, pp. 2806-2808. (In Russ.).
16. Fritsche E.T., Tensmeyer L.G. Liquidus in the alumina-rich system La2O3-A12O3 . J. Am. Ceram. Soc. 1967, vol. 50, no. 3, pp. 167-168.
17. Mizuno M., Yamada T., Noguchi T. Phase diagram of the system Al2O3-Ce2O3 at high temperature. Yogyo-Kyokai-Shi. 1975, vol. 83, no. 2, pp. 90-95.
18. Barzakovskii V.P., Kurtseva N.N., Lapin V.V., Toropov N.A. Diagrammy sostoyaniya silikatnykh sistem. Spravochnik. Vyp. 1. Dvoinye sistemy [State diagrams of silicate systems. Reference book. Vol. 1. Dual systems]. Leningrad: Nauka, 1969, 822 p. (In Russ.).
19. Mikhailov G.G., Samoilova O.V., Makrovets L.A., Smirnov L.A. Thermodynamic modeling of isotherms of oxygen solubility in liquid metal of Fe - Mg - Al - O system. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 8, pp. 639-645. (In Russ.).
20. Park J.H., Todoroki H. Control of MgOAl2O3 spinel inclusions in stainless steels. ISIJIntern. 2010, vol. 50, no. 10, pp. 1333-1346.
21. Prox H., Hino M., Ban-Ya S. Assessment of Al deoxidation equilibrium in liquid iron. Tetsu-to-Hagane. 1997, vol. 83, no. 12, pp. 773-778.
22. Bhzek Z. Fundamental thermodynamic data on metallurgical reactions and interactions of elements in systems important for metallurgical theory and practice. Hutnicke Aktuality. 1979, vol. 20, no. 1-2, pp. 3-111.
23. Balkovoi Yu.V., Aleev R.A., Bakanov V.K. Parametry vzaimodeist-viya pervogo poryadka v rasplavakh na osnove zheleza: obzornaya informatsiya [First-order interaction parameters in iron-based melts: Overview]. Moscow: In-t “Chermetinformatsiya”, 1987, 42 p. (In Russ.).
24. Wang L.J., Liu Y.Q., Wang Q., Chou K.C. Evolution mechanisms of MgOAl2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway. ISIJ Intern. 2015, vol. 55, no. 5, pp. 970-975.
25. Sigworth G.K., Elliott J.F. The thermodynamics of liquid dilute iron alloys. Metal Sci. 1974, vol. 8, no. 1, pp. 298-310.
26. Muhmond H.M., Fredriksson H. Graphite growth morphologies in high Al cast iron. In: Advances in the Science and Engineering of Casting Solidification: Proc. of Symposium, 15-19 March 2015, Orlando, USA. Orlando, USA: TMS, 2015, pp. 323-330.
Review
For citations:
Mikhailov G.G., Makrovets L.A., Samoilova O.V. Thermodynamic analysis of liquid steel refining by complex alloy containing La - Ce -Al. Izvestiya. Ferrous Metallurgy. 2020;63(3-4):238-247. (In Russ.) https://doi.org/10.17073/0368-0797-2020-3-4-238-247