Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Refining technology for titanomagnetite ores from Suroyamskoe deposit

https://doi.org/10.17073/0368-0797-2020-3-4-225-230

Abstract

Explored reserves of titanomagnetite ores of Suroyamskoe deposit in Chelyabinsk region is equaled to 11 billion tons. Construction of a new metallurgical enterprise may be relevant for their production and processing. The most promising is the traditional scheme of metal production: ore mining, its crushing and enrichment, production of agglomerate and pellets from concentrates, smelting of pig iron in blast furnaces and steel production in oxygen converters. To establish basic technological parameters of the new production scheme, pig iron smelting from sinter obtained from titanomagnetite ores of Suroyams-koye deposit and its further devanadation (to produce vanadium slag suitable for the production of ferrovanadium) were studied in laboratory conditions of Nosov Magnitogorsk State Technical University. At the initial stage, a calculation was carried out, than experiments in laboratory conditions were made. As a result, the technology was developed for smelting pig iron from sinter obtained from concentrate of Suroyamskoe deposit and its subsequent devanalization to produce two products: pig iron and vanadium slag. It has been established that it is advisable to obtain vanadium in it at least of 0.22 % when smelting pig iron. Dependences of the main indicator of devanadation effi-cience - the content of vanadium oxide in slag - on the concentration of vanadium in pig iron and the amount of slag were found. The fundamental possibility of de-exploitation of experimental Suroyamskii pig iron was confirmed with the production of vanadium slag containing up to 12 % V2O5 with the use of air blast as an oxidizing agent.

About the Authors

M. V. Potapova
Nosov Magnitogorsk State Technical University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Metallurgy and Chemical Engineering”.

Magnitogorsk, Chelyabinsk Region


V. A. Bigeev
Nosov Magnitogorsk State Technical University
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Metallurgy and Chemical Engineering”.

Magnitogorsk, Chelyabinsk Region



A. S. Kharchenko
Nosov Magnitogorsk State Technical University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Metallurgy and Chemical Engineering”.

Magnitogorsk, Chelyabinsk Region



M. G. Potapov
Nosov Magnitogorsk State Technical University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Metallurgy and Chemical Engineering”.

Magnitogorsk, Chelyabinsk Region



E. V. Sokolova
Nosov Magnitogorsk State Technical University
Russian Federation

Postgraduate of the Chair “Metallurgy and Chemical Engineering”.

Magnitogorsk,Chelyabinsk Region



References

1. Rostoker William. The metallurgy of vanadium. Chicago, 1958. (Russ. ed.: Rostoker W. Metallurgiya vanadiya. Moscow: Izd. in-ostr. lit., 1959, 194 p.).

2. Efimov Yu.V., Baron V.V., Savitskii E.M. Vanadii i ego splavy [Vanadium and its alloys]. Moscow: Nauka, 1969, 254 p. (In Russ.).

3. Lyakishev N.P., Slotvinskii-Sidak N.P., Pliner Yu.L. etc. Vanadii v chernoi metallurgii [Vanadium in ferrous metallurgy]. Moscow: Metallurgiya, 1983, 192 р. (In Russ.).

4. Garcia-Mateo C., Morales-Rivas L., Caballero F.G., Milbourn D., Sourmail T. Vanadium effect on a medium carbon forging steel. Metals. 2016, vol. 6, no. 6, pp. 130-132.

5. Pham M.K., Nguyen D.N., Hoang A.T. Influence of vanadium content on the microstructure and mechanical properties of high-manganese steel. International Journal of Mechanical and Mechanics Engineering. 2018, vol. 18, no. 2, pp. 141-147.

6. Gwon H., Kim J.-K., Shin S., Cho L., De Cooman B.C. The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel. Materials Science and Engineering: A. 2017, vol. 696, pp. 416-428.

7. Sourmail T., Garcia-Mateo C., Caballero F.G., Cazottes S., Epi-cier T., Danoix F., Milbourn D. The influence of vanadium on ferrite and bainite formation in a medium carbon steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2017, vol. 48, no. 9, pp. 3985-3996.

8. Chen S.Y., Chu M.S. A new process for the recovery of iron, vanadium, and titanium from vanadium titanomagnetite. Journal of the Southern African Institute of Mining and Metallurgy. 2014, vol. 114, no. 6, pp. 481-487.

9. Chen D., Zhao H., Hu G., Qi T., Yu H., Zhang G., Wang L., Wang W. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite. Journal of Hazardous Materials. 2015, vol. 294, pp. 35-40.

10. Zhang Y.M., Wang L.N., Chen D.S., Wang W.J., Liu Y.H., Zhao H.X., Qi T. A method for recovery of iron, titanium, and vanadium from vanadium bearing titanomagnetite. International Journal of Minerals, Metallurgy andMaterials. 2018, vol. 25, no. 2, pp. 131-144.

11. Gilligan R., Nikoloski A.N. The extraction of vanadium from ti-tanomagnetites and other sources. Minerals Engineering. 2020, vol. 146, pp. 106.

12. Zhao L., Wang L., Qi T., Chen D., Zhao H., Liu Y. A novel method of extract iron, titanium, vanadium, and chromium from high-chromium vanadium-bearing titanomagnetite concentrates. Hydrometallurgy. 2014, vol. 149, pp. 106-109.

13. Chen D., Zhao L., Liu Y., Qi T., Wang J., Wang L. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching process. Journal of Hazardous Materials. 2013, vol. 244-245, pp. 588-595.

14. Alikberov V.M., Khodina M.A., Chebotareva O.S. Exploration and ways of developing the raw material base of ferrous metals. Mineral’nye resursy Rossii. Ehkonomika i upravlenie. 2017, no. 4, pp. 4-10. (In Russ.).

15. Bykhovskii L.Z., Pakhomov F.P., Turlova M.A. Complex ores of titanomagnetite deposits in Russia - a large mineral resource base of ferrous metallurgy. Razvedka i okhrana nedr. 2007, no. 6, pp. 20-23. (In Russ.).

16. Ershova E.V., Zublyuk E.V., Krishtopa O.A., Lapteva A.M., Remizova L.I., Rudnev A.V. Mineral resources base of ferrous and alloying metals in Russia. Razvedka i okhrana nedr. 2016, no. 9, pp. 88-95. (In Russ.).

17. Bigeev A.M., Kolesnikov Yu.A. Osnovy matematicheskogo opisa-niya i rascheta kislorodno-konverternykh protsessov [Fundamentals of mathematical description and calculation of oxygen-converter processes]. Moscow: Metallurgiya, 1970, 229 p. (In Russ.).

18. Bigeev V.A, Nosov S.K. Novye protsessy proizvodstva i ispol’zovaniya vanadievykh shlakov: monografiya [New processes for the production and use of vanadium slag: Monograph]. Magnitogorsk: MGTU im. G.I. Nosova, 2000, 106 p. (In Russ.).

19. Fofanov A.A., Novoselov A.M., Sukhov L.L. Production of vanadium products at OJSC Vanadium-Tula. Metallurg. 2005, no. S1, pp. 47-50. (In Russ.).

20. Shapovalov A.S., Polishchuk A.V., Chernykh D.P., Il’inskikh A.A., Taldykin M.N. Sposob polucheniya ferrovanadiya [The method of ferrovanadium production]. Patent RF no. 2677197, MPK S21S 33/04. Bulleten’izobretenii. 2019, no. 2. (In Russ.).


Review

For citations:


Potapova M.V., Bigeev V.A., Kharchenko A.S., Potapov M.G., Sokolova E.V. Refining technology for titanomagnetite ores from Suroyamskoe deposit. Izvestiya. Ferrous Metallurgy. 2020;63(3-4):225-230. (In Russ.) https://doi.org/10.17073/0368-0797-2020-3-4-225-230

Views: 853


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)