Method for determining particle growth dynamics in a two-component alloy
https://doi.org/10.17073/0368-0797-2020-2-135-139
Abstract
Keywords
About the Author
N. M. YaparovaRussian Federation
Cand. Sci. (Phys.–Math.), Assist. Professor, Head of the Chair of Computational Mathematics and High-Performance Computing
Chelyabinsk
References
1. Kolmogorov A.N. To statistical theory of metals crystallization. Izvestiya AN SSSR. Seriya Matematicheskaya. 1937, vol. 1, no. 3, pp. 355–359. (In Russ.).
2. Avrami M. Granulation, phase change, and microstructure kinetics of phase change III. Journal of Chemical Physics. 1941, vol. 9, no. 2, pp. 177–184.
3. Volmer Max. Kinetics of Phase Formation: (Kinetik Der Phasenbildung). Central Air Documents, 1966, 219 p. (Russ. ed.: Volmer M. Kinetika obrazovaniya novoi fazy. Мoscow: Nauka, 1986, 208 p.).
4. Shneidman V.A., Goldstein E.V. Nucleation time lag at nanosizes. Journal of Non-Crystalline Solids. 2005, vol. 351, no. 8, pp. 1512–1521.
5. Wang D., Liu Y., Han Y., Zhang Y., Gao Z. Kinetic consideration for the incubation of the phase transformation and its application to the crystallization of amorphous alloy. Applied Physics A. 2008, vol. 92, no. 3, pp. 703–707.
6. Drozin A.D., Gamov P.A., Dudorov M.V., Roshchin V.E. Model for nanocrystal growth in an amorphous alloy. Russian Metallurgy (Metally). 2012, vol. 2012, no. 11, pp. 1002–1005.
7. Drozin A.D., Yaparova N.M. Probabilistic-statistical testing method for the techniques of metallographic determination of the amount of non-metallic inclusions in metal. Chernye Metally. 2018, no. 8, pp. 19–22.
8. Lipiński T., Wach A. Size of non-metallic inclusions in high-grade medium carbon steel. Archives of Foundry Engineering. 2012, vol. 14, no. 4, pp. 55–60.
9. Belyaev I.V., Grigorovich K.V., Kol’chugina N.B., Shibaev S.S. Effect of the purity of starting materials on the structure and properties of permanent magnets. Inorganic Materials. 2010, vol. 46, no. 3, pp. 291–294.
10. Sadovskii V.M. Equations of the dynamics of a liquid crystal under the influence of weak mechanical and thermal perturbations. AIP Conference Proceedings. 2014, vol. 1629, pp. 311–318.
11. Kholpanov L.P., Prokudina L.A. Mathematical modeling of unstable mass transfer complicated by chemical reactions. Theoretical Foundations of Chemical Engineering. 2005, vol. 39, no. 1, pp. 36–46.
12. Izmail-Zadeh A.T., Korotkii A.I., Naimark B.M., Tsepelev I.A. Three-dimensional numerical simulation of the inverse problem of thermal convection. Computational Mathematics and Math. Physics. 2003, vol. 43, no. 4, pp. 587–599.
13. Prokudina L.A. Nonlinear development of the marangoni instability in liquid films. Journal of Engineering Physics and Thermophysics. 2016, vol. 89, no. 4, pp. 921–928.
14. Tikhonov A.N., Goncharskii A.V., Stepanov V.V., Yagola A.G. Chislennye metody resheniya nekorrektnykh zadach [Numerical methods for solving ill-posed problems]. Мoscow: Nauka, 1990, 232 p. (In Russ.).
15. Vabishchevich P.N., Samarskii A.A. Finite-difference schemes for convection-diffusion problems on irregular meshes. Computational Mathematics and Mathematical Physics. 2000, vol. 40, no. 5, pp. 692–704.
16. Fra̧ckowiak A., Botkin N.D., Ciałkowski M., Hoffmann K.-H. A fitting algorithm for solving inverse problems of heat conduction. International Journal of Heat and Mass Transfer. 2010, vol. 53, no. 9-10, pp. 2123–2127.
17. Yaparova N.M., Shestakov A.L. Method for temperature measuring inside a cylindrical body based on surface measurements. In: 14 th IMEKO TC10 Workshop on Technical Diagnostics 2016: New Perspectives in Measurements, Tools and Techniques for Systems Reliability, Maintainability and Safety. 2016, pp. 8–12.
18. Vasil’ev V.V., Vasilyeva M.V., Kardashevsky A.M. The numerical solution of the boundary inverse problem for a parabolic equation. AIP Conference Proceeding. 2016, vol. 1773, no. 1, article 100010.
19. Lukyanenko D.V., Shishlenin M.A., Volkov V.T. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data. Communications in Nonlinear Science and Numerical Simulation. 2018, vol. 54, pp. 1339–1351.
20. Samarskii A.A. Vvedenie v teoriyu raznostnykh skhem [Introduction to difference theory]. Мoscow: Nauka, 1971, 553 p. (In Russ.).
Review
For citations:
Yaparova N.M. Method for determining particle growth dynamics in a two-component alloy. Izvestiya. Ferrous Metallurgy. 2020;63(2):135-139. (In Russ.) https://doi.org/10.17073/0368-0797-2020-2-135-139