Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Influence of plasma torch design on cutting quality during precision air-plasma cutting of metal

https://doi.org/10.17073/0368-0797-2020-2-155-162

Abstract

Optical interferometry and metallographic analysis were used to study structure of cutting seams obtained after 09G2S steel cutting by PMVR-5 plasma torch. These plasma torches have a number of design features in the system of gas-dynamic stabilization of plasma arc. It is shown that application of new plasma torch allows obtaining higher quality of cutting 09G2S steel of medium thickness with high productivity and lower energy costs. Metallographic analysis has shown that qualitative composition of the cut surface structure is almost the same, so priority criteria for comparative quality analysis are parameters of surface microgeometry. Evaluation of this parameter shows high quality of cutting almost along the entire length of a cut, since the influence of technological features of plasma arc cut into the metal affects at a distance of less than 0.3 mm from the edge of the sheet. The use of additional methods of gas-dynamic stabilization in PMVR -5.2 plasma torch (feed symmetry with a double swirl system of plasma-forming gas) allows to achieve additional advantages in terms of surface quality compared to PMVR -5.1. A number of features that affects quality of cut when cutting metals of different thicknesses for welding, is noted depending on the angle of inclination of plasma torch during cutting. Estimates of the surface layer hardness indicate minimal deviations from the requirements of GAZPROM Standard 2-2.4-083 (instructions on welding technologies in the construction and repair of field and main gas pipelines), which allows further use of cutting seams obtained by studied plasma torches for welding without removing zones of thermal influence. Thus, application of new plasma torches makes possible precision finishing plasma cutting of metals, including production of welded joints.

About the Authors

S. V. Anakhov
Russian State Professional Pedagogical University
Russian Federation

Cand. Sci. (Phys.–Math.), Head of the Chair of Mathematic and Natural Sciences

Ekaterinburg



B. N. Guzanov
Russian State Professional Pedagogical University
Russian Federation

Dr. Sci. (Eng.), Professor, Head of the Chair of Engineering and Vocational Training in Machinery and Metallurgy

Ekaterinburg



A. V. Matushkin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Cand. Sci. (Eng.), Senior Lecturer of the Chair “Welding Technology”

Ekaterinburg



N. B. Pugacheva
Institute of Engineering Science, RAS (Ural Branch)
Russian Federation

Dr. Sci. (Eng.), Chief Researcher of the Laboratory of Materials Micromechanics

Ekaterinburg



Ya. A. Pykin
Ural State Forest Engineering University
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair of Physical and Chemical Technologies in Biosphere Protection

Ekaterinburg



References

1. Nikou V. Welded repair and maintenance in the space environment. Massachusetts Institute of Technology, 2003, 113. р.

2. Kaidalov A.A. Sovremennye tekhnologii termicheskoi i distantsionnoi rezki konstruktsionnykh materialov [Modern technologies for thermal and remote cutting of structural materials]. Kiev: Ekotekhnologiya, 2007, 456 p. (In Russ.).

3. Kavun N.N., Gusev V.G. Comparative analysis of cutting methods for sheet material. In: Perspektivy razvitiya tekhnologii i oborudovaniya v mashinostroenii [Prospects of technologies and equipment in mechanical engineering]. Gorokhov A.A. ed. Kursk: Universitetskaya kniga, 2016, pp. 50–53. (In Russ.).

4. Esibyan E.M. Air-plasma cutting: state and prospects. Avtomaticheskaya svarka. 2000, no. 12, pp. 6–16. (In Russ.).

5. Hoult A.P., Pashby I.R., Chan K. Fine plasma cutting of advanced aerospace materials. Journal of Materials Processing Technology. 1995, vol. 48, pp. 825–831.

6. Nedic B., Jankovic M., Radovanovic M. Quality of plasma cutting. In: 13 th Int. Conf. on Tribology, SERBIATRIB ’13. Kragujevac, Serbia, 15-17 May 2013, pp. 314–319.

7. Anakhov S.V., Singer K., Pykin Yu.A., Shakurov S.A. Examination of the cut surface in thermal cutting of 09G2S steel. Welding International. 2008, vol. 22, no. 4, pp. 267–270.

8. Cherednichenko V.S., An’shakov A.S., Kuz’min M.G. Plazmennye elektrotekhnologicheskie ustanovki [Plasma electrotechnological installations]. Novosibirsk: NGTU, 2011, 602 p. (In Russ.).

9. Chieu Kuang Fi. Issledovanie effektivnosti tekhnologii uzkostruinoi plazmennoi rezki metallov: avtoref. dis... kand. tekhn. nauk: 05.08.04 [Feasibility study of narrow-jet plasma cutting of metals: Extended Abstract of Cand. Sci. Diss.]. St. Petersburg, 2008, 27 p. (In Russ.).

10. Lashchenko G.I. Plazmennaya rezka metallov i splavov [Plasma cutting of metals and alloys]. Kiev: Ekotekhnologiya, 2003, 64 p. (In Russ.).

11. Bhuvenesh R., Norizaman M.H., Abdul Manan M.S. Surface roughness and MRR effect on manual plasma arc cutting machining. International Journal of Industrial and Manufacturing Engineering. 2012, vol. 6, no. 2, pp. 459–462.

12. Ostrikov O.M., Kuznetsova O.S. Influence of plasma cutting modes on microstructure, microhardness and processing quality of carbon steels. Vestnik Gomel’skogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo. 2010, no. 1 (40), pp. 33–38. (In Russ.).

13. Gaar N.P., Rakhimyanov A.Kh., Loktionov A.A. Prevention of cut defects by optimizing trajectory for fine-jet plasma cutting. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2018, no. 2, pp. 70–75. (In Russ.).

14. Dresvin S.V., Zverev S.G. Plazmotrony: konstruktsii, parametry, tekhnologii [Plasmatrons: designs, parameters, technologies]. St. Petersburg: izd. Politekhn. un-ta, 2007, 208 p. (In Russ.).

15. Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric pressure plasmas: A review. Spectrochim Acta. Part B. 2006, no. 61, pp. 2–29.

16. Xiuquan Cao, Deping Yu, Meng Xiao, Jianguo Miao, Yong Xiang, Jin Yao. Design and characteristics of a laminar plasma torch for materials processing. Plasma Chemistry and Plasma Processing. 2016, no. 36, pp. 693–710.

17. Pykin Yu.A., Anakhov S.V., Matushkin A.V. Plazmotron [Plasma torch]. Patent RF no. 2584367. Bulleten izobretenii. 2016, no. 14. (In Russ.).

18. Shalimov M.P., Anakhov S.V., Pykin Yu.A., Matushkin A.V., Matushkina I.Yu. Evaluation of effectiveness of gas-vortex stabilization in plasma torch for metal cutting. Svarka i diagnostika. 2018, no. 2, pp. 57–61. (In Russ.).

19. Matushkin A.V., Pyckin Yu.A., Anakhov S.V., Matushkina I.Y. About raising of the gas vortex stabilization efficiency in plasma torch for metal cutting. Solid State Phenomena. 2018, vol. 284, pp. 218–223.

20. Mikhailitsyn S.V., Sheksheev M.A., Ayubashev O.M. etc. Plasma arc cutting of 09G2S low alloy steel. Vestnik MGTU im. G.I. Nosova. 2017, vol. 15, no. 2, pp. 48–52. (In Russ.).

21. Mostaghimi J., Boulos M.I. Thermal plasma sources: how well are they adopted to process needs? Plasma Chemistry and Plasma Processing. 2015, no. 35, pp. 421–436.

22. Vardelle A., Moreau C., Themelis N.J., Chazelas C. A perspective on plasma spray technology. Plasma Chemistry and Plasma Processing. 2015, no. 35, pp. 491–509.

23. Venkataramani N. Industrial plasma torches and applications. Current Science. 2002, vol. 83, no. 3, pp. 254–262.


Review

For citations:


Anakhov S.V., Guzanov B.N., Matushkin A.V., Pugacheva N.B., Pykin Ya.A. Influence of plasma torch design on cutting quality during precision air-plasma cutting of metal. Izvestiya. Ferrous Metallurgy. 2020;63(2):155-162. (In Russ.) https://doi.org/10.17073/0368-0797-2020-2-155-162

Views: 657


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)