Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Thermodynamic resource of increasing energy efficiency of steam power plants

https://doi.org/10.17073/0368-0797-2020-2-102-107

Abstract

Possibilities of increasing energy efficiency of steam power plants (SPP) are considered. They are used to generate electricity based on theoretical principles of technical thermodynamics with the use of system analysis. Systematic approach is implemented for the set of energy, environmental and economic problems facing power production. Based on global environmental and energy consumption trends, the article considers the main task of Russian power system – reduction of specific consumption of equivalent fuel per unit of generated electricity. Mathematical model of the task is provided. The main attention was paid to maintaining design parameters of SPP cycle in the capacitor. If it is not possible to provide required temperature and pressure using water cooling source, it is proposed to use heat pumps. In contrast to known methods of installing heat pumps for water cooling waste, it is suggested to collect heat on water supply line, bringing temperature to the designed parameters. We propose not to remove heat obtained from water supplied for condensate cooling, but to send it to the SPP cycle. It is shown that this heat makes possible to abandon device of low pressure heaters (DLPH), which will greatly simplify the design of SPP and allows using of intermediate steam of DLPH to generate electricity. Possibility of heating water in a heat pump to a temperature of 140 °С, which corresponds to the level of heating in DLPH, was calculated. Several ways of applying thermodynamics laws to operation of a steam-powered installation, which are still not used, were indicated: the use of air with negative temperature for cooling cyclone condenser instead of using traditional tubular condenser, and the use of phase transition (boiling) of cooling liquid for a condenser.

About the Authors

V. V. Sterligov
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Thermal Power and Ecology”

Novokuznetsk, Kemerovo Region



P. S. Pulikov
West Siberian Thermal Power Plant, branch of JSC “EVRAZ–Joint West Siberian Metallurgical Plant”
Russian Federation

Operator of Turbine Generator

Novokuznetsk, Kemerovo Region



References

1. Paris Agreement on Climate Change. The Intergovernmental Panel on Climate Change, 2015. Available at URL: http://www.ipcc.ch (Accessed: 15.03.2017).

2. Carbon market solutions – Website for practical research consultants on the Kyoto Protocol mechanisms. Available at URL: http://www.carbonmarketsolutios.com (Accessed: 15.03.2017).

3. Lisienko V.G., Shchelokov Ya.M., Ladygichev M.G. Khrestomatiya energosberezheniya: Spravochnoe izdanie v 2-kh knigakh. Kniga 1 [Anthology of energy conservation: Reference in 2 books. Book 1]. Lisienko V.G. ed. Мoscow: Teploenergetik, 2002, 688 p. (In Russ.).

4. Welfems P.J.J., Meyer B., Pfaffenberg W., Jusinski P., Jungmittag A. Energy Policies in the European Union Germany’s Ecological Tax Reform. Berlin, Heidelberg, New York: Springer, 2001.

5. Kutateladze S.S. Fundamentals of heat transfer. United States: N. p., 1964, Web, 660 p.

6. Hotel H.C., Zarofun A.F. Radiative Transfer. New York: McGraw Hill, 1967, 520 p.

7. Meadows D., Randers J., William W. Behrens III. The Limits to growth. Universe Book, New-York: 1991, 210 p.

8. Novak A.V. Power industry in Russia – state and development prospects. Energosberezhenie. 2014, no. 1, pp. 6–11. (In Russ.).

9. Gulyaev V.A., Voronenko B.A., Kornyushko L.M. etc. Teplotekhnika. Uchebnik dlya vuzov [Heat engineering. Textbook for universities]. St. Petersburg: RAPP, 2009, 352 p. (In Russ.).

10. Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Annales scientifiques de l’É.N.S. 2e série, 1824, 457 p. (In Fr.).

11. Kirillin V.A., Sychev V.V., Sheindlin A.E. Tekhnicheskaya termodinamika. Uchebnik dlya vuzov [Technical thermodynamics. Textbook for universities]. Moscow: Energiya, 1974, 448 p. (In Russ.).

12. Delyagin G.N. etc. Teplogeneriruyushchie ustanovki [Heat generating plants]. Moscow: BASTET, 2010, 624 p. (In Russ.).

13. Losev S.M. Parovye turbiny i kondensatsionnye ustroistva [Steam turbines and condensing devices]. Moscow: Energiya, 1964, 376 p. (In Russ.).

14. Searle M., Furby J. Design and exploration of condensing boilers. 52 nd Autumn Meeting, Westminster, SWIP3EE, November 1986, pp. 22–24.

15. Rivkin S.L., Aleksandrov A.A. Termodinamicheskie svoistva vody i para [Thermodynamic properties of water and steam]. Moscow: Energiya, 1975, 80 p. (In Russ.).

16. SP 131.13330.2018 Stroitel’naya klimatologiya (SNiP 23-01-99*) [SP 131.13330.2018 Construction climatology (SNiP 23-01-99 *)]. Moscow: Minregion Rossii, 2018, 107 p. (In Russ.).

17. Ito O., Koboyashi H. Development of gas engine-driven heat pumps and vulleumier cycle heat pumps for residential use. Reprint of the 1995 Int. Gas Research Conf., Cannes, France. 6-9 th November. Vol. 5. Industrial Utilisation, pp. 1–10.

18. Ivano H., Yamada T. Development of absorption type air conditioners for residential use. Reprint of the 1995 Int. Gas Research Conf.,Cannes, France. 6-9 th November. Vol. 5. Industrial Utilisation, pp. 11–22.

19. Branson T., Lorton R., Winnington T.L., Gorritxategi X., Green R.J., Sanz Saiz J.I., Uselton R.B. Interotex – the development of hight lift hight perfomance heat pumps. Reprint of the 1995 Int. Gas Research Conf., Cannes, France. 6-9 th November. Vol. 5. Industrial Utilisation, pp. 23–32.

20. Kobylkin M.V., Batukhtin S.G., Kubryakov K.A. Promising direction of heat pumps introduction. Mezhdunarodnyi nauchnoissledovatel’skii zhurnal. 2014, no. 5-1 (24), pp. 74, 75. (In Russ.).

21. Sterligov V.V., Pulikov P.S., Sterligov M.V. Sposob povysheniya energoeffektivnosti parosilovoi ustanovki i ustroistvo dlya ego osushchestvleniya [Method and device of increasing energy efficiency of steam power installation]. Patent RF no. 2689233. Bulleten izobretenii. 2019, no. 15. (In Russ.).

22. William Thomson, 1 st Baron Kelvin – Wikipedia, 2015. Available at URL: https://en.wikipedia.org/wiki/William_Thomson,_1st_Baron_Kelvin/ (Accessed: 25.03.2018).

23. Sterligov V.V., Evtushenko V.F., Zaitsev V.P. Application of experimental design in the study of convective heat transfer. Report 2. Izvestiya. Ferrous Metallurgy. 1974, no. 2, pp. 165–169.


Review

For citations:


Sterligov V.V., Pulikov P.S. Thermodynamic resource of increasing energy efficiency of steam power plants. Izvestiya. Ferrous Metallurgy. 2020;63(2):102-107. (In Russ.) https://doi.org/10.17073/0368-0797-2020-2-102-107

Views: 539


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)