Welding of differentially heat-strengthened rails. Modeling of processes during welding and local thermal processing
https://doi.org/10.17073/0368-0797-2020-2-93-101
Abstract
Keywords
About the Authors
N. A. KozyrevRussian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Materials, Foundry and Welding Production”
Novokuznetsk, Kemerovo Region
R. A. Shevchenko
Russian Federation
Assistant of the Chair “Materials, Foundry and Welding Production”
Novokuznetsk, Kemerovo Region
A. A. Usol’tsev
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Materials, Foundry and Welding Production”
Novokuznetsk, Kemerovo Region
A. N. Prudnikov
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Materials, Foundry and Welding Production”
Novokuznetsk, Kemerovo Region
L. P. Bashchenko
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Thermal Power and Ecology”
Novokuznetsk, Kemerovo Region
References
1. Poznyakov V.D., Kir’yakov V.M., Gaivoronskii A.A., Klapatyuk A.V., Shishikevich O.S. Properties of welded joints of rail steel at electric arc welding. Avtomaticheskaya svarka. 2010, no. 8 (688), pp. 19–24. (In Russ.).
2. Dahl B., Mogard B., Gretoft B., Ulander B. Repair of rails on-site by welding. Svetsaren. 1995, vol. 50, no. 2, pp. 10–14.
3. Rukavchuk Yu.P., Rozhdestvenskii S.A., Etingen I.Z. Defectiveness of joints at aluminothermic rail welding. Put’ i putevoe khozyaistvo. 2011, no. 4, pp. 26–27. (In Russ.).
4. Gudkov A.V., Lozinskii V.N. New technological and technical solutions in welding for railway transport: problems and judgments. Vestnik VNIIZhT. 2008, no. 6, pp. 3–9. (In Russ.).
5. Kalashnikov E.A., Korolev Yu.A. Rail welding technology: trends in Russia and abroad. Put’ i putevoe khozyaistvo. 2015, no. 8, pp. 2–6. (In Russ.).
6. Girsch G., Keichel J., Gehrmann R., Zlatnik A., Frank N. Advanced rail steels for heavy haul applications–track performance and weldability. In: Heavy haul and innovation development proceedings; 9 th Int. Heavy Haul Conf., Shanghai, June 22 – 25, 2009. Shanghai, 2009.
7. Mutton P., Cookson J., Qiu C., Welsby D. Microstructural characterisation of rolling contact fatigue damage in flashbutt welds. Wear. 2016, vol. 366, pp. 368–377.
8. Leikin A.E., Rodin B.I. Materialovedenie. Uchebnik dlya mashinostroit. spetsial’nostei vuzov [Materials Science. Textbook for technical universities]. Moscow: Vysshaya shkola, 1971, 416 p. (In Russ.).
9. Lakhtin Yu.M., Leont’eva V.P. Materialovedenie. Uchebnik dlya vysshikh tekhnicheskikh uchebnykh zavedenii [Materials Science: Textbook for technical universities]. Moscow: Mashinostroenie, 1990, 528 p. (In Russ.).
10. Oyama T., Sherby O.D., Wadsworth J., Walser B. Application of the divorced eutectoid transformation to the development of fine-grained, spheroidized structures in ultrahigh carbon steels. Scr. Metall. 1984, vol. 18, no. 8, pp. 799–804.
11. Nakano T., Kawatani H., Kinoshita S. Effects of Cr, Mo and V on spheroidization of carbides in 0.8 % carbon steel. Trans. Iron Steel Inst. Jpn. 1977, vol. 17, no. 2, pp. 110–115.
12. Zhang G.H., Chae J.Y., Kim K.H., Suh D.W. Effects of Mn, Si and Cr addition on the dissolution and coarsening of pearlitic cementite during intercritical austenitization in Fe – 1 mass % C alloy. Mater. Charact. 2013, vol. 81, pp. 56–67.
13. Molinder G. A quantitative study of the formation of austenite and the solution of cementite at different austenitizing temperatures for a 1.27 % carbon steel. Acta Metall. 1956, vol. 4, no. 6, pp. 565–571.
14. Hillert M., Nilsson K., Törndahl L.-E. Effect of alloying elements on the formation of austenite and dissolution of cementite. J. Iron Steel Inst. 1971, vol. 209, no. 1, pp. 49–66.
15. Gouné M., Maugis P., Drillet J. A criterion for the change from fast to slow regime of cementite dissolution in Fe–C–Mn steels. J. Mater. Sci. Technol. 2012, vol. 28, no. 8, pp. 728–736.
16. Luzginova N.V., Zhao L., Sietsma J. The cementite spheroidization process in high-carbon steels with different chromium contents. Metall. Mater. Trans. A. 2008, vol. 39, pp. 513–521.
17. Kostin V.N., Tishina N.A. Statisticheskie metody i modeli: ucheb. posobie [Statistical methods and models: Manual]. Orenburg: OGU, 2004, 138 p. (In Russ.).
18. Skugorova L.P. Materialy dlya sooruzheniya gazonefteprovodov i khranilishch: uch. posobie [Materials for construction of oil and gas pipelines and storage: Manual]. Moscow: Nedra, 1989, 344 p. (In Russ.).
19. Shevchenko R.A., Kozyrev N.A., Shishkin P.E., Kryukov R.E., Usol’tsev A.A. Calculation of optimal modes of rails electrical contact welding. Vestnik gorno-metallurgicheskoi sektsii Rossiiskoi akademii estestvennykh nauk. Otdelenie metallurgii. 2016, no. 37, pp. 175–180. (In Russ.).
20. Shevchenko R.A., Kozyrev N.A., Kutsenko A.I., Usol’tsev A.A., Kutsenko A.A. Methodology of the study of isothermal annealing modes impact during rail steel welding. Vestnik SibGIU. 2018, no. 4 (26), pp. 8–11. (In Russ.).
Review
For citations:
Kozyrev N.A., Shevchenko R.A., Usol’tsev A.A., Prudnikov A.N., Bashchenko L.P. Welding of differentially heat-strengthened rails. Modeling of processes during welding and local thermal processing. Izvestiya. Ferrous Metallurgy. 2020;63(2):93-101. (In Russ.) https://doi.org/10.17073/0368-0797-2020-2-93-101